
 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/669   
1 

 

 

SDS PODCAST 

EPISODE 669: 

  STREAMING, 

REACTIVE, 

REAL-TIME 

MACHINE LEARNING  

http://www.superdatascience.com/669


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/669   
2 

Jon Krohn: 00:00:00 This is episode number 669 with Adrian Kosowski, Co-

Founder and Chief Product Officer at Pathway. Today's 

episode is brought to you by Posit, the open-source data 

science company, and by AWS Cloud Computing Services. 

 00:00:17 Welcome to the SuperDataScience podcast, the most 

listened-to podcast in the data science industry. Each 

week, we bring you inspiring people and ideas to help you 

build a successful career in data science. I'm your host, 

Jon Krohn. Thanks for joining me today. And now let's 

make the complex simple. 

 00:00:48 Welcome back to the SuperDataScience podcast. Today, 

the positively brilliant researcher and entrepreneur, Dr. 

Adrian Kosowski returns to the show to give us a taste of 

what the future of machine learning looks like. Adrian is 

Co-Founder and Chief Product Officer Pathway.com, a 

framework for real-time, reactive data processing that is 

based in Paris. He has over 15 years of research 

experience, including nine years at INRIA, a prestigious 

French computer science center, leading to the co-

authorship of over 100 articles in a range of fields, 

theoretical computer science, physics, and biology, for 

example, and he's covered topics in those papers, like 

network science, distributed algorithms, and complex 

systems. He previously co-founded and led business 

development for Spoj.com, a competitive programming 

platform used by millions of software developers, and he 

obtained his PhD in computer science at the ripe old age 

of 20. 

 00:01:38 Today's episode will appeal primarily to hands-on 

practitioners like data scientists, machine learning 

engineers, and data engineers. However, we do our best to 

break down technical terms and provide concrete 

examples of topics so that anyone can enjoy learning 

about the cutting edge in training machine learning 

models. In this episode, Adrian details what streaming 

data processing is and why it's superior in many ways, to 

the batch training of machine learning models that 
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historically dominated data science. He talks about how 

streaming data processing allows highly efficient real-time 

model training, how reactive data processing enables data 

applications to react instantly and automatically to never 

before seen input data, potentially saving firms vast 

sums. He talks about when it makes sense for computer 

scientists to become a product leader like he did. He talks 

about why Pathway selected the particular programming 

languages they did for their platform, and the big up-and-

coming opportunity for data and machine learning 

startups. All right, you ready for this mind-blowing 

episode? Let's go. 

 00:02:40 Adrian, welcome back to the SuperDataScience podcast 

for your first full-length episode. You were here...we met 

at the Open Data Science Conference West in San 

Francisco, back in the northern hemisphere autumn. And 

you recorded an awesome episode on Liquid Neural 

Networks - that's episode number 632. Fascinating 

technical topic. Adrian, where in the world are you calling 

in from today? 

Adrian Kosowski: 00:03:09 So, I'm based in Paris. I'm calling in from just outside 

Paris, France, from a place which used to be the 

countryside, but is now meant to be the Silicon Valley of 

France. 

Jon Krohn: 00:03:19 Oh, yeah. And it's the Pathway Office, is that right? 

Adrian Kosowski: 00:03:22 It is. It is. 

Jon Krohn: 00:03:23 Nice. And, so you're the co-founder. You're a co-founder, 

and you're the Chief Product Officer at Pathway, which is 

a reactive data processing framework that allows people 

to create real-time data products much more easily. So, I 

know that we're going to get into a lot of what Pathway is, 

but before we even get into that, I want to let our listeners 

know that you very kindly offered, you're offering 10 free 

hoodies to the first people that respond. So, when I, when 

we release this episode, it'll be, it's always on Tuesday 
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mornings from a North American perspective, it'll be the 

morning, and I post on LinkedIn from my personal 

account, a big post about what the episode's gonna be all 

about. When I make that post, I'll include in it, to say, the 

first 10 people that ask for a Pathway hoodie, get one, 

and you're offering to ship them anywhere in the world. 

So, it's very kind. Thank you, Adrian. 

Adrian Kosowski: 00:04:20 It's our pleasure entirely. These are really good hoodies. 

We hope you'll be satisfied. 

Jon Krohn: 00:04:24 Yeah, apparently they're hoodies so good that you'll want 

them, even if you're in a very hot climate. 

Adrian Kosowski: 00:04:31 That's what they say. We also do software, but we do 

hoodies most of the time. 

Jon Krohn: 00:04:39 Yeah, so when you guys aren't designing hoodies tell us 

about the software that you make. So, you have a reactive 

data processing framework. Yeah. Tell us what that 

means and what can you do with it. 

Adrian Kosowski: 00:04:49 Yeah, sure. So, reactivity is all about the art of dealing 

with changing data in such a way that you don't have to 

worry too much about the processing part when data 

changes. I think if you want to be formal, there's probably 

some dictionary or encyclopedic definition of reactivity 

which will tell you it's about being declarative, declarative 

in a programming sense, like explaining the logic without 

imperatively saying what to do at every step of a data 

transformation, without explaining vocals in like a 

functional programming sense, explaining what the 

transformation should be. And that's about the essence. 

So, it's really combining the ability to be declarative with 

the ability to process data changes automatically in an 

efficient way. So, that's a notion known as incrementality. 

 00:05:48 It's the idea that when data changes, you don't have to do 

a full recomputation of over models, of over things that 

you've designed in your data pipeline or in your data 
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science project. You just do a minimally computation to 

react to the way data changes. So, I guess the most best 

known example of a reactive system out there is your 

spreadsheet, call it Excel sheets, whatever you prefer, 

software, you define the rules on the data, and when the 

data changes, the cells update. So, this is like one 

example. It's a data processing example. It's not one that 

scales very well, but it's an example of data processing. 

And actually, since spreadsheets came in, I think nobody 

has been able to fully replicate the success of this type of 

approach at scale. And we come with, with our attempt. I 

should say that reactive reactivity is a concept that's very 

well known, very familiar to frontend developers, if you've 

worked with JavaScript TypeScript. 

Jon Krohn: 00:07:02 Yeah. It's even probably the most famous framework right 

now for front end development is called React.js. 

Adrian Kosowski: 00:07:09 It is, and the others that don't have React in their name 

only active, nonetheless. All of them are. And like the, the 

kind of place this has got front-end developers to is that 

you when designing a front-end system you don't have to 

do as much event handling as you would do 15 years 

back. So, some of you may remember having to write 

things like on-the-click events to describe the state 

change of a button, you know, when you click, you have 

to do it, and so on. And these days in front-end 

development, you don't do it that much. Surprisingly in 

data processing, even data processing at scale, if you 

want to work in a real-time setup, you want to work with 

data that changes or with streams of event data, a lot of 

the time you still find yourself doing the equivalent of on-

the-click-do or something like this. 

 00:08:06 The back-end equivalent is on-data-change event or on-

arrival of a certain packet of data do. And this is 

something that has to be done behind the scenes, no 

question about it. It's just that we don't necessarily want 

the developer, be it the data engineer or a data scientist to 

be exposed to the pain of doing this type of on-something 
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event processing after they've already had to put a lot of 

effort to design the system just to get their job done, to 

create a model or something. 

Jon Krohn: 00:08:44 So, it seems relatively straightforward to me to 

understand in the case of a user interface, we have a 

browser app that is reactive to somebody adjusting how 

wide the browser is, or whether they come in on a mobile 

browser or a tablet or a desktop, that the website 

automatically adjusts, or as you're saying, to behaviors to 

somebody clicking on something and the application 

reacting to that. In the case of data changing, what does 

that mean? Like how do the data change that are flowing 

into a machine learning system? Like, the machine 

learning system it could be handling different kinds of 

data types, or what does, yeah, what does it mean when 

the data changes? 

Adrian Kosowski: 00:09:35 So, the most straightforward setup, I'd say, is when the 

data type does not change, you just have to deal with new 

data, the same type, just data that you haven't seen 

before. If you're a data scientist, like the ideal world is 

when the data sample that you're working with is the 

actual data that will be, that has to be analyzed. When 

you're in the online ever-changing world where new data 

comes in, this is never the case that the data sample that 

you look at, at the time of designing your model is for one, 

for which you need to do the insight. So, where, in some 

sense, where at least for the testing data, the real-world 

testing data, is not known to you. Sometimes even in real-

world scenarios, it may be the case that the training data, 

so to speak, is not known to you. So, your model is 

retraining itself or adjusting to new incoming data. 

Jon Krohn: 00:10:39 Online learning. 

Adrian Kosowski: 00:10:40 Online learning and, and things like this. So, this is for 

the general setup. If you like diagrams, you can picture 

data inputs on the left, data outputs on the right, and 

your data pipeline in between, and whatever fresh events 

http://www.superdatascience.com/669


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/669   
7 

come in from input need to be taken into account. If you 

want to make life fun, fun in, in a architecture sense, you 

can also put a human in the loop, somebody who's 

providing feedback on how your model is performing and 

saying, actually, we should tweak this parameter. For 

example, it's like, you know, it's, today we need to adjust 

because it's a, we have a special day, and something like 

this. Some parameter for your forecasting prediction, 

anomaly detection model. Or the user can say, actually in 

the training data, the was a mistake, and we need to pull 

out the training data point and say, look, this should 

never have been obtained like this, or the label should 

have been changed. Or a certain class of automated 

inputs which entered the system may have entered with 

incorrect values. For example m, there was some 

confusion between m denoting meters and miles. Of data 

that input needs to be rescaled, and you have to sort of 

unlearn the data that came in previously and relearn with 

the new data. So, anything, anything is kind of possible 

in the sense of data changes for the system. 

Jon Krohn: 00:12:17 So, in the past, on the podcast, we've talked about issues 

around things like feature drift, where, you design a 

machine learning model to be able to handle the kinds of 

training data that it's encountered in the past, but then 

the real world changes. And so the inputs, the features 

that are coming into the model, so you know, you 

described a flow from left to right. So, on the left-hand 

side, in those data inputs, the inputs are fundamentally 

changing, the structure of the inputs is changing. So, 

even though, as you say, it's the same data type, you 

know, it's still a 16-bit float value, or it's a, you know, it's 

an integer, whatever, the features are now in a range that 

are outside of your training data because the world has 

changed. So, is what you are describing, this reactive 

data processing, it's designed to allow your machine 

learning models during online learning to be able to adapt 

to this feature drift automatically. 
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Adrian Kosowski: 00:13:25 So, this is part of the story. I think reactive data 

processing should be treated very broadly and if you start 

implementing it in the larger system like data pipelines in 

enterprise, which are processing event data, the start of 

the story is in data engineering. The end of the story is in 

analytics. In order to benefit fully from this type of 

framework, from real-time data processing in general, it 

has to be put into place like end to end, or at least it 

helps to put it into place, end to end. And the, the 

models, the analytics models, the machine learning 

models that come in are kind of the cherry on the cake, 

but the one that allows it to [inaudible 00:14:13], a lot of 

value. So, we make sure to make this possible. 

 00:14:17 This is just to say that in a strictly machine learning 

context this would be a very, let's say, a good application 

and at the same time, an ambitious one when you get to 

models which are sufficiently advanced to be very much 

aware of problems like feature drift versus, let's say, an 

intermediate class in somewhere in between engineering 

and more advanced machine learnings of models which 

have a certain time horizon, a time window in which they 

learn, and they are updated as this time window moves 

ahead. I'd say this is like first more natural example in 

the real world project that you'll be looking at for last few 

months of data, some kind of moving average on the data 

and trying to adapt to it. So, indeed it may be the case 

that we get into questions of models getting outdated and 

needing updating, model versioning, and so on. But this 

is some heavy machinery which comes in relatively late in 

the project. A lot of the time it's actually possible to just 

adapt to the structure of the data itself by having a model 

which knows how to adapt to the structure of the data, 

which has this capacity to encompass horizons to be 

somehow scale-free with respect to the nature of the data. 

Jon Krohn: 00:15:54 Nice. Every company wants to become more data-driven, 

especially with languages like R and Python. 

Unfortunately, traditional data science training is broken. 

The material is generic. You’re learning in isolation. You 
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never end up applying anything you’ve learned. Posit 

Academy fixes this with collaborative, expert-led training 

that’s actually relevant to your job. Do you work in 

finance? Learn R and Python within the context of 

investment analysis. Are you a biostatistician? Learn 

while working through clinical analysis projects. Posit 

Academy is the ultimate learning experience for 

professional teams in any industry that want to learn R 

and Python for data science. 94% of learners are still 

coding 6 months later. Learn more at Posit.co/Academy. 

 00:16:40 So, let's try to make this example a bit more concrete by 

going into let a specific use case. So, you and I were 

planning on later in the episode talking about global 

supply chain networks and how the pandemic broke 

these, and how reactive data processing combined with 

IoT (Internet of Things) hardware could make, help make 

rather global supply chains more resilient to abrupt 

delays and shocks. So, maybe let's dig into that specific 

use case now, so that as we kind of address other 

questions around how reactive data processing works, we 

can like tie into the specific concrete example. 

Adrian Kosowski: 00:17:18 Yeah. So, actually, we started Pathway working closely 

with actors in the logistics industry, working to improve 

global supply chains and global transportation patterns. 

Logistics is a pretty fascinating area because if you look 

at the importance for value in the scale of the industry, 

it's about something like 10% of a world economy. It's, so 

it's really big. It's highly concentrated, and a lot of a value 

is in international trade, trade that goes on containers, 

tucks, large vehicles. And it's in some sense from a data 

processing perspective, when we were starting, this was 

largely terra incognita. It was of a new world of analyzing 

this type of data patterns related to logistics assets. 

 00:18:12 What IoT gives in this setting is the ability to trace moving 

assets, be it containers, trucks, parcels, you name it, end 

to end. That is you attach a sensor and you have a whole 

trace, the whole tech of an asset that's moving. And this 
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leads to an interesting situation in which something like 

10% of world industry has some of its most important 

data lying in one data schema, one data format, which is 

essentially a big table of events related to moving assets. 

That's the table whose columns are something like 

timestamp, asset ID, location x, y, or GPS latitude, 

longitude, and for type of event that happened, whether it 

was a kind of just a measurement of a location, whether if 

it was a measurement performed by a IoT, for example, of 

temperature, pressure, door opening, some kind of alert. 

 00:19:18 And this kind of table actually captures a lot of other 

things in logistics as well. For example, if there's the 

facility where your parcels are being scanned, all such 

scans events also enter in this type of table. So, you have 

one kind of input data table, data schema, which seems 

to capture everything that's happening, which is quite 

unusable from the point of view of business intelligence 

analytics and process monitoring and observability used 

directly, just because it's super hard to query. It's hard to 

express in the language such as SQL, a query on the 

data, which would extract what's important. And the 

important questions are related to process, things that 

are happening. So, for example, a logistics client may be 

interested in knowing what are the risks of anomalies of 

given type, like shocks happening to your sensitive 

pharmaceutical shipments in the next two days on a 

given route, let's say, Rotterdam to New York. 

 00:20:32 And, if you look at the data inputs, all the information is 

there. If we've given a lot of man years and a lot of 

patience, you could probably get it in the end by hand. 

But, it's not all that easy to extract and automate over 

global processes. So, that's where we started. We started 

working with a process of enriching this data 

automatically, converting the schema to add structure to 

it in such a way that is actually possible in real-time to 

get an enriched data schema, which is queryable, and 

which reveals information about the process. A lot of 

aspects to it related to, first of all, trajectory mining, 
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understanding how things flow, a uncovering 

automatically the key locations, so, this is like automatic 

Geofence detection in the [inaudible 00:21:28] of the 

sector. It's about understanding anomalies, congestion, 

delays as they happen or even before they happen, and 

putting into place predictive models. 

 00:21:42 So, there are many steps here. And already getting all of 

this done in a batch setting, a setting where you have all 

the data available, like just historical data, is a challenge 

to express it cleanly and to get an analysis of a snapshot, 

so to speak, of the data. And it gets extremely complicated 

if you, on top of this, you'd would want to manually 

create logic in a way which would take into account 

changing data. It becomes a task which is both tedious 

[inaudible 00:22:24] requires a lot of duplication of logic 

between the, let's say, the offline case and the online case 

and so on. 

 00:22:30 So, our effort was on the one hand to automate this, and 

on the other hand also to figure out what parts, what 

models in machine learning, what transformations of 

data, are actually amenable to this type of approach. 

Basically say, forget what cannot be done, focus on what 

can be done here now, and make it possible to make this 

robust. So, just to give you an example of the types of 

data processing routines that we have. We've designed to 

work robustly across different modes of transport, be it 

ship, truck, train, container, or vehicle even working for 

small assets like parcels, sometimes with animals, 

sometimes with public transportation. So, basically to 

have models which work with very little or minimal 

awareness of what is actually being traced, what type of 

acid is being traced to allow changes to this process, to 

allow new modes of transport to be introduced, to allow 

changes to the logical process. 

 00:23:40 If you follow like what your couriers and delivery people 

are up to before Christmas, it's actually amazing how the 

whole logistics network adapts, there are new depots 
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being opened, temporary depots. There's changes to the 

process. Things are happening completely differently in 

peak season. And if you want to make sense of it, you 

have to have a system which is able to take into account 

these changes as they happen. New depots open? Okay, 

it's not something that you'll want to manually introduce. 

It's something that you have to kind of capture from the 

data. 

Jon Krohn: 00:24:17 Wow. Okay. Yeah, so, that is very concrete and crystal 

clear. So, these real-time data products, reactive data 

processing frameworks like Pathway allow data models to 

be applied to complex systems like a delivery system, like 

the global supply chain network. And it's reactive 

automatically to things like vastly greater volumes in 

peak season at around Christmas time, heading into 

Christmas time, including things like hubs coming online 

that previously weren't there. And so you don't want to be 

going to your data scientist and saying, "Hey, a new hub 

opened up yesterday. It's December 1st, and a new hub 

opened up. We need you to retrain all of the machine 

learning models that we had to be able to account for this 

new hub. And then the very next day, two more hubs 

open up, because we're one more day closer to Christmas, 

and you're like, sorry, data scientists, we got two more 

hubs. We need to retrain that data model again". And 

every time the data scientists are like, oh, this is gonna 

take like a week. And so, instead with a reactive data 

processing system, it's flexible to these kinds of changes 

automatically. 

Adrian Kosowski: 00:25:36 Yeah. And that's exactly the [inaudible 00:25:39]. It's, it's 

kind of also changes the whole workflow for way the non-

technical user can interact with the application. So, you 

can have an expert in the domain who is working with a 

system. And rather than asking data scientists to update 

models, they either get, at a case of a simple model you 

can actually redeploy the model as it happens, or in some 

case, you get a question whether you want to update your 

model, you update your data. So, if we talk of these hubs 
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that open at the beginning of the day whoever's managing 

the dashboarding part of the solution gets information 

that "we have detected, 20 new hubs, which opened since 

yesterday, please approve or correct errors". And 

essentially the work of this person is more in fine tuning 

or fixing things that didn't, that were not detected with, 

let's say 100% accuracy or performing small collections to 

the automatic labeling that's being done, rather than 

actually introducing [inaudible 00:26:50] the change 

process manually. 

 00:26:54 Just to say from our perspective this is where we started 

out with. So, we started with one concrete data product in 

logistics, and this is our flagship data product. It's being 

used by major companies, freight forwarders like DB 

Schenker, which is third worldwide largest freight 

forwarder in the world by the French Postal Services, 

which also have a wide international network on this 

operating in other countries as well. So, the kind of use 

there is what we see and we feel, at the same time what 

we are delivering is the visibility of data scientists and 

data engineers to work in the same way as we do. So, we 

want this, we want to share the experience, we want to 

share the experience both with everybody, with a wide 

community, and also with the data teams of our clients. 

To work closely with them, to allow them to modify the 

data pipelines, to include new data sources. So, it's really 

very much about giving this full development experience 

and having it work like having it work as a developer tool. 

Jon Krohn: 00:28:12 Nice. That's crystal clear. And so, now that you have 

expanded beyond that initial use case, your most 

developed product around global supply chain networks, 

what other kinds of use cases are people using this 

reactive data processing for? 

Adrian Kosowski: 00:28:27 So, this is interesting because like the use cases 

expressed in our terms, so, I'm assuming we are 

discussing data here, and data like data audiences are 

extremely horizontal. They're not like tied to industry-
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specific verticals. So, many of, many of us change jobs, 

you know, between different companies, like going from, 

from healthcare to, let's say whatever, transportation or 

manufacturing. But for the kind of use cases that exist 

from a, you know, from a data science perspective are 

pretty consistent [inaudible 00:29:07] anomaly detection 

in real-time, predicting anomalies, detecting fraud, which 

is the type of anomaly detection, and recommendations 

online updated recommended systems. Some further 

ones, which do appear in some cases of [inaudible 

00:29:25] forecasting, and time series forecasting, plus 

let's say some, that are further down the stream. But in 

some sense, it's also a question of the most immediate 

value, for most immediate, most immediate pain point is 

really for one where you need to act quickly. And the time 

horizon related to anomaly detection, to alerting is just 

much, much shorter than the time horizon related to 

updating forecast models typically. 

Jon Krohn: 00:30:01 Right? So, I can imagine financial applications, for 

example, where you're detecting fraud would be, a really 

great use case. 

Adrian Kosowski: 00:30:07 Yeah, financial applications are a nice one. It's also 

interesting that you have several horizons in the financial 

application. Let's say you are doing real-time transaction 

processing, be it more on the major card processing actor 

side or on the DeFi side. Either way, you have a window 

of opportunity of two to three seconds to block certain 

types of transactions. Those who have the user is still not 

getting impatient. And then a post-processing like window 

where you can still undo some transactions of try to fix 

things. But things get worse from in the horizon of 

seconds to minutes. So, this time horizon is actually very, 

very short in this case. 

 00:30:52 One that many of us in data know is related to monitoring 

of health of systems of processes that are going on. So, 

things around observability in process of server 

monitoring in because the system reliability field. This is 
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an interesting use case, which is very special, but it also 

gives, I think an idea of the kind of alerting that we are 

looking at. If there's a human operator involved, you want 

to react within your SLA time window, which will typically 

be something like 15 minutes. This is the number that 

comes up most often given guidelines of major companies. 

So you have like 15 minutes to react, and the kind of data 

that you have is how many minutes of this 15-minute 

window that you as a human have to react, are eaten up 

by the system being slow to give you the information. If 

it's more than five minutes, you're really, really angry, but 

maybe you could go from five minutes to three minutes to 

30 seconds. Sometimes you increase for value there, and 

you can actually do way, way better if you get this alert 

faster. 

Jon Krohn: 00:32:16 Cool. Are you stuck between optimizing latency and 

lowering your inference costs as you build your generative 

AI applications? Find out why more ML developers are 

moving toward AWS Trainium and Inferentia to build and 

serve their Large Language Models. You can save up to 

50% on training costs with AWS Trainium chips and up 

to 40% on inference costs with AWS Inferentia chips. 

Trainium and Inferentia will help you achieve higher 

performance, lower costs, and be more sustainable. 

Check out the links in the show notes to learn more. All 

right, now back to our show. 

 00:32:53 All right, so now that I have a clear idea, and probably 

our listeners have a clear idea of applications of this 

reactive data processing, let's dig into it technically in a 

bit more detail. So, a big contrast that comes up a lot in 

the context of reactive data processing, and that even 

came up in a recent episode number 661 with Chip 

Huyen. So, there's this idea of batch processing versus 

stream processing. And so, what's the difference from a 

machine learning perspective between these two 

processing modes, batch and streaming, and how does 

that tie into reactive data processing? 
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Adrian Kosowski: 00:33:34 So, actually the, the answer that would be taken from a 

reactive data processing perspective is that if you look at 

time, time as something that appears in your data, if time 

is an important feature for you, then it's an important 

feature for you. And whether you are in batch or in 

streaming, you should handle time. If time is not a 

feature in your data then you should have a privilege of 

not looking at time and the system will be able to handle 

things for you. So, just to give a very concrete example, 

let's take- 

Jon Krohn: 00:34:15 Yeah, please. You just blew my mind. 

Adrian Kosowski: 00:34:16 Let's take- 

Jon Krohn: 00:34:17 If time, if you have the luxury of time, not mattering- 

Adrian Kosowski: 00:34:21 Yeah. And it's actually something like time not being a 

feature means for, for example, look at spam. What's a 

spam message? A spam message is the same, like you see 

spam, you recognize it, you'd read the same thing as 

spam today, as in the week or in a month, right? It's 

spam is, spam is like, there's no time aspect related to 

spam. However it might be the case, that depending on 

how the spammer is behaving, you may be able to detect 

a spam message at some point or not. For example, when 

somebody is sending a message for the first time, the 

spam filter may still not be aware that it's spam. But after 

a message has been sent 10,000 times, 100,000 times 

your model for spam detection or a spam detection filter 

will be able to figure out that something is amiss because 

of a behavior of a spammer. 

 00:35:18 Your messages are classified as belonging to a kind of 

cluster component somewhere, which is spamish. And all 

of this can be classified as spam, right? So, in this sense 

what's happening is that the incoming data allows the 

model to improve its classification decisions over time. 

However, the logic of the classification process as such is 

largely not tied to time. It can be...time doesn't have to 
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play a role in it. You can do a lot of things without 

thinking about time. So, what the answer is in the 

reactive setting, is that you could imagine that you have 

access to all of your data in batch mode. Basically, you 

have all of the input, you process it, you give the answers, 

and these are the best answers you can have because 

they are answers given with all the knowledge. 

 00:36:20 And then if you launch the same code in a reactive 

system, it'll be doing its best to maintain answers, which 

are as good as possible given the current knowledge. So, 

at the end of the day, it'll converge to the same outcomes, 

which you would've had if you had had all the 

information initially. And on the way, it'll be doing kind of 

a best-effort classification based on whatever partial 

knowledge it has. So, it may happen that a message 

comes into your inbox, call it Gmail, for example. 

Suppose Gmail has a reactive spam filter. It's classified as 

non-spam, but five minutes later when new information 

arrives it's, it becomes automatically reclassified as spam 

and can be pulled from your- 

Jon Krohn: 00:37:07 [crosstalk 00:37:07] Oh, wow. 

Adrian Kosowski: 00:37:09 So, this is, this is the idea that you don't have to worry 

about the deployment for way how things are going to be 

you know, run, rerun. You don't have to worry about how 

the data streams unfold over time. You just designed the 

logic and you put it in the system, and you somehow you 

were released of from the worry about of the streaming 

data. 

Jon Krohn: 00:37:32 Cool. All right. So, I know we're getting there, but, so how 

does this, we haven't, like concretely defined this 

difference between batch and streaming? 

Adrian Kosowski: 00:37:42 Yeah, so batch is the concept that your computation is 

run and scheduled. I think batch, orchestration, 

scheduling, ... These are concepts that all go together, 

they are part of the same mindset, it's one where you look 
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at the data as it is now, you run a computation on it, or 

you run some processing on it, something happens eight 

hours later, 24 hours later, the scheduler says, rerun for 

batch, you rerun for batch, and things get updated. So, 

it's this type of mindset. 

Jon Krohn: 00:38:18 To give maybe an extreme example that gives a clear 

sense of this, when people have been using ChatGPT 

since it came out in late 2022, it has a modal that comes 

up and gives you all kinds of warnings. Like this is 

experimental, but one of those warnings is that the data 

hasn't been refreshed since 2021 or something like that. 

And that's because the underlying model, so up until very 

recently at the time of recording the most common 

natural language model the people were using under the 

hood of ChatGPT, was GPT-3.5, and this GPT-3.5 had 

been trained on a batch of data that was current up until 

2021 at some point. And so there was this big batch of 

data, and then it took, who knows, maybe weeks of 

training, maybe even months, I don't know. 

 00:39:12 GPT-3.5 is so large that the whole processing pipeline 

could have taken months to do, particularly when they 

want to add in all these kinds of safeguards around using 

it ethically. And so, that model is not streaming. It's very 

much the opposite. And you could take that same model 

architecture and update it in 2022 at some point, but it's 

only getting like this annual update on a batch basis. So, 

you have these big batches of data, and so you're 

describing the situation where the batches could be much 

smaller, where it could be every eight hours or every 24 

hours that we have in machine learning model in 

production. That is where the model weights are being 

updated from new data. So, that things like a new hub in 

the delivery network that came online in the last 24 hours 

is now going to be handled. You know, we have some data 

regarding this hub and we can be handling it. Yeah. So, 

that, so this kind of gives the sense of batches and how 

we can have big, big gaps between model refreshes or 

small gaps. And then streaming is a completely different 
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kind of perspective where it's like data point by data point 

in real time being updated. 

Adrian Kosowski: 00:40:31 Yeah. Streaming is exactly this perspective where the data 

flows in a manner where when the new data point comes 

in, you handle it. So, if I think like, to be perfectly, like to 

take a, maybe a human perspective and batch and 

streaming for the inherent preference for, for looking at 

batch or looking at streaming depends very much on 

what, what world you come from. If you're more in the 

mainframe or static database type of thinking, you 

probably have a natural preference for looking at 

computational systems as batch systems. If you are more 

in the microservice design APIs, things communicating, 

data flowing, your natural preference, your first approach 

is more around working with streaming data. And each 

type of system, whether it's around batch processing or 

around event-driven stream processing has very different 

characteristics. 

 00:41:52 In general being event-driven has the advantage, the 

obvious advantage of lowering latency because you can 

react to new data as it, as it arrives so your models can 

update. The difficulty is in making non-trival logic work. 

And by non-trivial, I mean actually doing something like a 

database join which is already impossible in most data 

processing frameworks to maintain a join of two data 

tables, join as you'd see it in SQL and Pandas or 

whatever. This is something that's hard to do in real-time, 

let's say, and that requires a special framework, which 

has to know how to handle the joint to be able to do it. 

So, back in 2019, it was messy to do. Now more and more 

frameworks are catching up, but this is about the 

forefront in terms of tooling as what's possible, what kind 

of difficulty of processing is possible in real time. 

Jon Krohn: 00:42:59 Cool, cool. Yeah, so it sounds from, you know, I come 

from this background of being a scientist. And so, we ran 

discrete experiments and you get a batch of experimental 

results. And so, I'm used to this idea of having like, this 
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specific table we're like, okay, experiment one is done. I 

have my set of data, it has this many rows because that's 

exactly how many human participants we had in this first 

study. And then it's just kind of static indefinitely. And I 

train a model on it, might then publish the results of the 

model. I might even make the data open-source, make it 

available freely online, put it into the public domain, and 

then anybody can use my perfect table of data from 

experiment one that never changes. And so, yeah, so I 

come from this batch background. It's probably the case 

that people that are used to the kind of streaming 

situation that you're describing, people who are used to 

microservices, they're probably more likely to come from a 

computer science background or a software development 

background. 

Adrian Kosowski: 00:44:12 So, I'll, I can give you an example because right now we 

are doing some experiments on our side. We are, we're 

running benchmarks of Pathway against other 

frameworks. So, we are doing an experiment and in, if in 

some sense these experiments, let's say last weeks, they 

take weeks to run, and you need multiple repetitions of 

an experiment to get to liable data to be able to take, let's 

say the medial of the data points or some average or 

whatever. But imagine you just wait for the first run to 

complete, the first time of your experiment, and you 

already have a data source, which can be like, let's say 

Google Sheets or Excel. Google Sheets is a better idea 

because it's kind of more online, more live, where you've 

put your experimental results there. 

 00:45:03 And at this point you can use whatever plotting software 

you like let's say Tableau to get some first charts out of it. 

And now suppose you continue running the experiment 

and as new data points arrive, you get larger and larger 

sample and your dashboards are live, they get updated as 

the sample goes. And for example, once you've got five 

runs, a line, which was a bit noisy at the beginning, has 

kind of smoothed out because you've lost the statistic 

noise level has been reduced. So, your dashboard is a 
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kind of life dashboard on top of a scientific experiment. 

So, in some sense, in this way, you can look at a scientific 

experiment being done in streaming mode with new data 

is coming in, it's updating, fixing the dashboards and at 

some point you press stop and this dashboard is 

production ready. 

 00:46:02 And this time is a good point to say that the fact that you 

are in streaming mode does not mean that you cannot 

look at data back in time. It's a bit like with most of our 

productivity tooling that we're using these days, we are 

used to the fact that you can look at the version history, 

you can go back some number of edits, you can go back 

to a past snapshot or past version of the system. And this 

is especially important in distributed systems which are 

serving answers to requests. And you have to be 

absolutely sure that you are serving answers based on a 

consistent version across machines. Meaning that you are 

referring to one snapshot, let's say from a few seconds, 

few minutes back. But if there's a problem with the 

snapshot, you could also roll back to a past snapshot, 

maybe 20, 30 minutes back or even further. So, there a 

kind of notion of snapshotting of a past. But you're 

working inherently with a kind of timeline of, of things 

that move, move forward. 

Jon Krohn: 00:47:10 So, is this, this constant movement, this constant 

timeline, is that maybe the most challenging aspect for 

machine learning engineers when they're trying to 

implement streaming applications? 

Adrian Kosowski: 00:47:23 If you were using an API which has streaming in the 

name, then it's an added challenge. It's an, it's a second 

challenge. I wouldn't want to say it's the biggest challenge 

in terms of some kind of ingenuity being conceptually the 

most difficult that would be undermining the, the effort 

that's needed to actually get something going in machine 

learning, which is enormous, but it is an enormous 

challenge in terms of system deployment, system 

maintenance, making sure there are no bugs, making 
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sure this is actually feasible to them. So, the, the industry 

standard for now is that going from batch prototype, that 

means static data scientist showing a dashboard to a live 

streaming deployment of the same dashboard, updating 

in real time is roughly 10 times the effort. 

 00:48:38 So, I'm not saying it's necessarily 10 times the same 

ingenuity needed, it's just 10 times the effort at 10 times 

for timeline. Likewise. So, it's a question of cost. It's a 

question of some R&D risk involved, some risk that that 

things will go wrong or will not be moving fast enough 

and afterwards there's a question of maintaining this and 

making sure the system is going. So, at this point, the 

system, if it's a streaming system, it has essentially hired 

somebody on the MLOp side on the data and 

engineering/reliability side to make sure that the pipeline 

is being properly maintained. So, it's a challenge to a 

degree, but many systems never end up going from batch 

to streaming or from prototype to production with 

realtime data. Because this challenge is just too much to 

overcome. And depending on the, depending on the 

setting, it's sometimes maybe the case that the project 

actually brings 10 times more value if put into place in 

real-time or even more. But it just never happens because 

the cost side is too prohibitive, or the time management is 

too prohibitive. And the approach, what we're taking is 

basically to automate the second step, make it possible 

too. 

Jon Krohn: 00:49:57 So, streaming can historically be 10 times as complicated 

but it can offer more than 10 times the value once it's 

implemented in production. And real-time reactive data 

processing frameworks like Pathway are designed to 

dramatically decrease that 10 times complexity in getting 

it set up and allowing you to realize that 10 times value, 

Adrian Kosowski: 00:50:22 Well put Jon. The cost aspect is actually quite fascinating 

because as we do this transition from batch systems to 

work more and more with steaming data there are a lot of 

dimensions on the cost side, which come in with a 
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steaming system, which are not obvious. So, one aspect is 

that the structure of expenses related to infrastructure, 

cloud infrastructure changes. Traditionally streaming 

systems had a higher hot storage component requiring a 

lot of state to be maintained in hot storage. And this is 

only changing now. This is a cost factor which has been 

reduced, and this is the counterpart is actually that batch 

systems have an enormous computational cost associated 

with them because you are doing a lot of essentially 

useless computation every 24 hours. You're recomputing, 

recomputing, recomputing, the same things, even though 

maybe in the horizon of one day, 1% of your input later 

changed, you're doing a 100% recomputation, 

Jon Krohn: 00:51:40 Right. 

Adrian Kosowski: 00:51:40 So, in the case of, you know, of actors, when you, when 

you look at your cloud bill and you take the free 

components, which is storage data processing, and 

networks communication, let's say if a data processing 

clusters, your, your spark clusters or whatever else you're 

using to, to churn the data, are generating a significant 

part of a bill. It may be the case that moving to 

streaming-like systems or reactive systems which allow 

you to transition through from micro batching into this, 

this online world will actually cut the bill of a- 

Jon Krohn: 00:52:18 [crosstalk 00:51:18] Cool. Yeah, that's really interesting 

because to me it seems inherently that if you have this 

continuous learning, oh, of course that's gonna be more 

expensive because it's always running all the time. But I 

hadn't thought about it from this perspective that with 

batches, you're retraining the entire model every time. 

Yeah, and so that is very computational expensive. Very 

cool. Hadn't thought about that. 

Adrian Kosowski: 00:52:41 There are many like practical aspects to it. And one is 

just, you know it's, it's for reality around us for ad hoc 

instances are often much more expensive than instances 

[inaudible 00:52:53]. So, the rule of thumb is that if your 
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computation is running for four hours, five hours, six 

hours during a day, during 24 hours, it already makes 

sense to have an instance just reserved for this like 24/7 

without asking for a new instance every time. And if 

you're in this space by making this like batch 

computation spread out over time, you are already better 

allocating new resources because you get something like 

a factor 4, 5 in computational resources for free just by 

having more hours in the day to use. And, there are a lot 

of possible gains which just come from this better like 

spreading of computation over time. 

Jon Krohn: 00:53:40 Very cool and crystal clear. So, to allow these reactive 

data processing operations to happen efficiently over this 

24-hour data as opposed to doing it in batches at 

Pathway, you talk about transformers, and so these aren't 

to be confused with transformer architectures that have 

become really common in large language models like GPT-

4 and going all the way back to the early transformer 

architectures like BERT, it's a different kind of 

transformer. So, it's kind of like maybe how the word 

Kernel is used in computer science. It means so many 

different things, and so transformer here means 

something different. Although from our chat prior to 

beginning recording, it sounds like there is a kind of a 

common thread to the etymology of why a transformer 

architecture is called that and why your reactive data 

processing operations are called transformers. Do you 

want to fill us in on these transformers? 

Adrian Kosowski: 00:54:38 Yeah, I guess this is a great question actually. And just to 

say that the name transformer is kind of controversial in 

the sense that obviously transformers of a T in GPT and 

basically one of the more commonly used words on the as 

an architecture in deep learning and kind of backstory 

from our perspective is that one of our fans in Business 

Angels is a co-author of the original Transformers paper. 

So, [inaudible 00:55:13] attention is all you need. And our 

CTO also comes from the attention/transformers world. 

So, it took a lot of internal discussion if we wanted to use 
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the word transformers in a pure data processing sense 

just there's not much depth to it. A transformer is 

something that transforms one kind of data into another 

kind of data. In our case, it's a box which transforms 

tables into other tables. We are not the first to coin this 

term, and I think it's one of them, like on the data 

engineering side, it's pretty unambiguous and I think for 

the season we- 

Jon Krohn: 00:55:57 Oh, really? So, in data engineering, this use of 

transformers as an operation that transforms one kind of 

data structure into some other format that's, it's quite 

common? 

Adrian Kosowski: 00:56:12 It's used by some other frameworks. I'd say as like, we 

didn't want to coin new terminology for it. There's actually 

an interesting point which also helps to take the path 

between data engineering and data science is that in data 

engineering, a lot of the time you think of your data 

tables, data sources as assets meaning that there, there's 

certain, like they have a physical representation 

somewhere in the data warehouse, and when you 

combine them, you create a new physical representation. 

And to do it, you need to run a job. If you are in batch 

mode or something like this, it's, there's a very physical 

feeling to data flows, whereas in the data science world 

more often than not you are designing a kind of block, a 

building block, which just it's like a function which takes 

certain input parameters and has certain output 

parameters, which is much more flexible to use. 

 00:57:16 It's not tied to specific inputs, it's more composable. It 

can be used inside other functions. In our case in the 

case of Pathway, we have support for iterations. So, for 

example, iterate a given transformation until convergence. 

So, you can have a transformer, which is like one 

iteration of let's say gradient descent, and you put it into 

a block which says iterate until convergence, and then 

you get a new transformer, which is like for, for looped 

version of the first one. And, and in this sense, something 
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that, that has these like data table interfaces in and out 

that's pluggable and, and moldable in the, in the data 

flow is how we use the term transformer. 

Jon Krohn: 00:57:59 So, cool. So, now I understand what transformers are in 

the context of data engineering and if transforming some 

data format into another data format as part of this data 

flow. So, why is that so critical as a part of streaming and 

reactive data processing? 

Adrian Kosowski: 00:58:17 So, the kind of place which is crucial here is actually 

being able to express logic easily, clearly, and in a way 

which is accessible. And we are always somewhere on the 

boundary between declarative and imperative 

populations. So, if you say you want to filter a table 

leaving only values in which a given column is larger than 

10, you're defining a kind of block which says, let the 

data in. And you get one table at input and output table 

with the same schema, but with fewer lows. So, it's as if 

you were wiring together blocks and the connections 

between these blocks you can, you can feel a bit as if you 

were fiddling with, I don't know, with circuits or whatever. 

You're just pinning them together and you get the kind of 

data flow. 

 00:59:20 And this is like the outmost perspective. And somehow 

when you look inside each of these blocks, so when you're 

running a filter, which just leaves values with the larger 

than 10 you're probably doing a built-in, which is, which 

is like a filter, select something like this. But you could be 

doing something a little more advanced, which is like 

applying a lambda function to every row of your table in 

the MapReduce paradigm. So, you could be doing 

something more powerful. And then you could also be 

doing some transformations which are specific to multiple 

rows of the table. So, this comes in a lot when the data is 

interconnected. For example, when your data tables 

represent a graph, a network, and the connections 

between nodes expressed by edges, which are pointers to 

other nodes, and you want to perform some kind of local 
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operations, for example do a search of a given 

neighborhood of a graph, and there you can switch to a, 

it's more convenient to switch to a programming 

paradigm where your main actor is not the table, but it's 

really the data row, the data element, the data node that 

you're working with. 

 01:00:39 And you act around it somehow. So, you are, you're not 

working with tables, you are, you are working with, with 

individual roles and this is what's happening inside for 

transformers. So, if you peek inside, you have this 

possibility to work with individual data elements, it's a bit 

like it, it's a bit like to some extent, if you define a kernel 

when you, you mentioned the word kernel. So, kernel is 

very, very much about designing a transformation, which 

is around individual wires. And the whole thing the whole 

deployment has to perform has to run for multiple kernels 

in panels. So, it's the counterpart of this in the world of 

incremental reactive process. 

Jon Krohn: 01:01:24 Cool. And there are instances in the context, certainly of 

reactive data processing where these transformer 

operations are themselves, machine learning powered. 

Right. And I think you've referred to those as smart 

replacements. 

Adrian Kosowski: 01:01:38 Absolutely. Yeah, that's the objective, and from being a 

product person, I'm very much like on the developer 

experience front. This is one of my hopes here is to 

provide a seamless experience transitioning from what 

you could call relatively mundane data operation which is 

defined in SQL to one, which is in some sense smart or 

fuzzy or machine learning powered. To give you an 

example, if you take the group by operation, which 

groups row of the table according to a value of a given 

column. So, standard group by. This returns a certain 

number of groups of rows, if you take a clustering 

operation on the table, clustering understood in a 

machine learning sense, clustering also performs a 

grouping of data points, right? So, from an interface 
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perspective, if you use a table or data frame API to 

express the operation group by, as you see it in SQL or 

Pandas and clustering with arbitrary custom logic have 

the same API. 

 01:02:57 So, in some sense, for us, it's just an interchangeable 

box. If somebody is, for example, grouping, let's say 

points in space by the x and y coordinates, they put a 

group by type of box, but then they change group by to 

spatial clustering. And then the internals pass from an 

SQL like database operation to a machine learning 

operation, which performs a clustering of points in space. 

So, this is like one example for group by versus cluster. 

Another is about, for example, join versus smarter fuzzy 

join if you're joining two tables by name, okay, versus 

pure join operation. If you are joining, but there maybe 

typos in your names or some other inaccuracy, so, you're 

not sure which column you're joining with which column, 

then you're getting into some kind of fuzzy filtering. And 

the API again, stays the same, but for implementation is 

completely different. And we switch, like we make the 

transition from the data engineering to the data science 

side. 

Jon Krohn: 01:04:05 Crystal clear, thank you for those examples. They make it 

very easy to understand how transformers can be 

machine learning powered and be these smart 

replacements in a reactive data processing framework. 

And you mentioned in your response there, how you are a 

product person. I think this is interesting. So, we 

mentioned right at the onset that you're the chief product 

officer at Pathway, but if I dare say your background 

strikes me as the kind of background that somebody 

would usually have as a CTO as a Chief Technical Officer. 

So, you have this very technical computer science 

background. I know you're still hands-on today writing 

code, and you're in this CPO role. And, so I think you 

might have given us a bit of a clue to the answer as to 

why it makes so much sense that you're the CPO and it's 
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because the Pathway product is designed for highly 

technical people. It's designed- 

Adrian Kosowski: 01:04:56 Absolutely, absolutely. I think, the main all goal of a 

products person is to understand the end user and to be 

like the end-user. It makes things simpler, but at least to 

understand the needs of the end-user and to be able to 

have a certain empathy for these needs. This is why I 

guess for a technical person, it's easier to be a CPO of a 

developer product. I would say if it were not a developer 

product, I'd be completely disqualified. Just not kidding. I 

mean, it's like it's too tempting to switch size and be part 

of a creative process and say, I mean what if we could add 

to our data processing engine something else that, you 

know, when starts doing, doing a tech push and so on. 

 01:05:50 Yeah. I agree fully this temptation exists and it's kind of a 

bit of a complication, always knowing how the internals 

work. However, being technical also means that I can 

actually test the product in action. I can add five lines of 

code in Pathway. I can see it. I can see if I'm able to 

showcase the things that we are promising ourselves, I 

can review some showcases or pieces of open-source run 

by others using Pathway to see if it's all meeting the 

expectations that are made of it. Especially given that the 

state of data processing frameworks as it is, is such that 

the developer experience and the experience of 

maintaining them, scaling them is one of the bigger 

issues. Cause things just are either a follow apart or don't 

work 100% of the time. So, when the experience of 

actually interspecting debugging is not optimal. And this 

is one of the bigger pains of data teams, and having trying 

to experiment with how we can resolve these issues and 

work on the experience front is a major challenge and 

major, I think, opportunity also for this space to provide 

some improvements here. 

Jon Krohn: 01:07:12 Nice. That makes a lot of sense. And yeah, I can, it's 

crystal clear to me now. When I was preparing for this 

episode, I was like, oh, this is kind of interesting. And 
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then it started to become really obvious. Okay, he is the 

perfect product person because he is the ideal user of this 

product as well. So, speaking of your technical 

background before Pathway, you were a computer science 

researcher for over 15 years, including at a renowned 

French institute called INRIA in French, and it translates 

into English as the French Institute for Research and 

Computer Science and Automation. And when you were 

that researcher for all those years, you published dozens 

of peer-reviewed papers, you specialized in things like 

network science, distributed algorithms, dynamical 

systems, and the transport optimization that Pathway 

specialized in initially. So, do you have like a particular 

area from that time, from your research time that was, 

that you were really passionate about, maybe you're still 

really passionate about today? It seems like complex 

systems, for example, were a recurring theme for you. 

Adrian Kosowski: 01:08:21 Definitely. Definitely. If you zoom out, you know, and look 

at a large system where things are moving, it can be in 

nature with ants cooperating in the task, it can be a 

transportation system. Then you look at how it's built, 

how it works, how the local interactions drive a system, 

and it's fascinating to observe this from also a 

computational perspective and ask why it's working like 

this. So, why is the why is it working and what does it 

achieve in this way? And can we learn from it? Can we 

learn things about it? Can we learn certain approaches? 

Can we try to transfer them into computational 

paradigms or vice versa? Can we use computational 

paradigms to explain complex systems? I think one of the 

recurring themes which exist in complex systems is 

visibility of distributed control and coordination, which is 

fascinating. 

 01:09:23 Another, which is probably closer to the, let's say for big 

challenges of both machine learning and computer 

science for the next decade is one of low energy 

computing or energy optimization. If you look at 

distributed systems, they actually, for the fact that they 
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are so distributed, they do things locally, they learn 

things, they improve things with relatively little 

interaction, little communication, little computation, and 

little cost. And for an ant, it's obvious that it cannot, you 

know, use up more energy than it has because it has to 

eat to get this energy. So, it's kind of optimizing as well 

for the computation effort. It cannot have a bigger brain 

because that would eat up its sugar. So, there are things 

that [inaudible 01:10:19] in nature that are driven by 

energy. In world, let's say computing world, especially in 

for deep learning world, versus something that's kind of 

acknowledged that we are not optimizing for energy and 

in, and that a lot of these computations are done in a way 

which well just gets things done with by scaling resources 

up scaling cost up. 

 01:10:50 But, since it's so important, we don't think about the, the 

energy impact and for actually the incremental way of 

computation and also streaming computations are more 

energy efficient. So, it's somehow more natural for me to 

be in this space, which cares about the amount of data 

updates that are happening in these systems, and doesn't 

just recompute everything from the beginning, 

Jon Krohn: 01:11:18 Right? The ant brains in a streaming processing system 

don't need to be as big because they're just online making 

decisions, one little piece of food at a time. 

Adrian Kosowski: 01:11:33 Fascinating, it's, quite fascinating with ant brains for the 

more external storage an ant can rely on, like leaving 

pheromones the less it needs to store in its head if it 

cannot rely on external storage like, because it's too hot 

in, let's say [inaudible 01:11:52] desert, then it has to do 

more computations, and they do rely more on internal 

storage and [inaudible 01:11:58]. So, these surprising 

tradeoffs between like communication storage and 

computation happen in nature, and they're very like 

neatly captured by a lot of those models. So, so it's kind 

of. 
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Jon Krohn: 01:12:13 That's so cool. 

Adrian Kosowski: 01:12:14 So, yeah, I guess there are many challenges that nature 

and that complex systems are remarkably good at, but we 

haven't quite grasped. One of them is the ability to forget. 

This is one of the things that many natural systems have, 

which is naturally forget things they've learned or they 

unlearn things. This is something that's not super easy 

with deep learning models. So, it is more the, again, the 

area where lightweight models or models which have 

some kind of ability to add, delete data points that they, 

that have an edge in this area somehow. 

Jon Krohn: 01:13:01 Rich, rich opportunity for more research there, for sure. 

And so, you made this leap from all these years of 

research into being a startup founder. How did you make 

that leap? And is there anything that you missed from 

being a researcher? It sounds like you still get to do a lot 

of fascinating research in the role that you're in. 

Adrian Kosowski: 01:13:19 Definitely. I get to miss the frustrating part of being a 

researcher. So, like one thing that I've discovered is that 

it's actually gives more, more joy to deliver code or all like 

small showcases around code, which is open-sourced 

then to focus on the full effort of writing papers. Maybe 

GPT-4 will change that and actually, for paper writing 

part will be taken care of. We just have to focus on 

delivering the essence for now. But there are many 

exciting, exciting challenges in which we are doing now, 

that's true. I should say I'm not completely new to the 

enterprise/startup world. Given that something like 

almost 20 years back, I started a programming 

community called Spoj.com, Spoj com which would be in 

its day one of the largest competitive programming 

communities. 

 01:14:22 It was, we really did it for the excitement of actually 

getting people to use, to learn competitive programming, 

to boost their skills. But we also needed the lifeline for it. 

And interestingly enough, the lifeline, the revenue 
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channel there was through enterprise who were interested 

in putting into place a similar framework for their 

enterprise staining programs in what was known as 

algorithms at the time. And then started being called a 

data science but with a, with a gentle migration around 

2010. But this was also an interesting experience for me, 

like drafting my first contacts and doing my first sales, 

and at the same time, having this enormous opportunity, 

which was to drive a community, be part of a community, 

take feedback from a community, and to learn the things 

that I sort of need to make for product better. 

Jon Krohn: 01:15:20 Nice. Very cool. I, yeah, I actually, I was hoping to speak 

about Spoj.com so I'm glad that you managed to tie it in 

there. And so, given that you are still hands-on today, so 

despite being in this CPO role you know, very senior role 

in a fast-growing startup, you still manage to make time 

to be hands-on day-to-day. I'd love to hear what your 

weakest, kind of, like, what kinds of roles, what kinds of 

hats you have to wear over the course of the week when 

you're, you know, there's product design aspects, there's 

programming aspects, you end up, you make podcast 

appearances, conference presentations, that kind of 

thing. 

Adrian Kosowski: 01:16:05 Yeah, there's multiple hats versus the hat of the product 

person. And that is already many shades of one hat, 

because the product person is all about collecting input 

about features, which comes from outside that could be 

from outside, meaning from users who are happy, 

unhappy, or expect some prioritization or just have some 

comments. Comments from clients who, which come in 

through, through sales channels and so on. And 

somehow aligning these needs with what is actually 

feasible and what is proposed by the CTO, by the 

development team with a longer term roadmap, which is 

kind of originates from us and from what we would see in 

the system. So, somehow being able to make an informed 

prioritization decision about the different features, 

elements, aspects that come in is part of my role. 
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 01:17:05 It's an interesting place to be because when part of your 

product is essentially a framework which has an API, 

your features are like code in a way, and then this means 

it's actually way, way closer to code. Another hat is about 

actually being able to work with the community, the 

users who are excited about the product, and to be able 

to either help them or at least understand better where 

they're excited and see if we can make the product meet 

expectations. So, this is very much that both making 

reach outs which are maybe not too overwhelming just to 

say basically, "Hey, we are there, if there's anything we 

could do better. We understand that the framework is 

relatively new still, so it's robust, but you don't have 

10,000 answers on stack overflow to, to guide you, but we 

are here for you. We are here on Discord, you know, you 

can exchange with us freely and like, get answers 

probably sooner. And actually also have like 10 excited 

members of our development team who are able to help 

guide and potentially come up with new ideas together." 

So, this is, this is pretty exciting as well to be part of 

animation of this. One thing which I've done for Pathway 

and which I know some organizations, we are not the first 

to do it, so I know some organizations have done it. One 

organization that has done it is GitHub. We've pushed a 

lot of the workflow into a combination of GitHub with pool 

requests with content creation, for example, through 

markdown. 

 01:18:54 And if you imagine that you have a monorepo base, which 

includes your code, your website documentation, and 

your content pieces, this means that no barriers in the 

workflow between team members who are more on the 

marketing side, content marketing side, or on the side of 

actual creation. Anybody can contribute on a fair basis 

using the tooling. There is a certain onboarding effort, 

which is perhaps higher than just with platforms that are 

not meant for developers. So, you have to devote two 

hours at the minimum to onboard every new team 

member, but once the process is flowing, anybody can 

contribute, and it's kind of transparent whether you're 
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contributing to the code base, to the documentation, to 

the content around it. So this, it's much more natural 

that the key developer will say, "Hey, we are not 

explaining this site on our website, let me fix it". 

 01:19:56 And likewise, somebody is not just writing an article or a 

content piece about it, they're delivering a full executable 

piece of code, which can be compiled by during a ci cd 

process into something that goes live as an article on our 

website, and also tested in the process, whether the latest 

version of a framework doesn't, like is it's not broken, or 

that there's no issue with things executing properly, so, 

that we can be absolutely sure that our content meets 

developer standards and we deliver quality. 

Jon Krohn: 01:20:32 Yeah, a lot of different hats that you have to wear, of 

course. 

Adrian Kosowski: 01:20:35 Yeah. I try to reduce this one. It's something that you can 

pull off probably only in developer-product oriented team, 

but one that I highly recommend, if you happen to be 

doing one just make markdown the language in which 

people talk to each other, technical and non-technical, 

you can do basically everything there from like websites 

in some sense, code as well, or code that generates 

markdown. And so drawings, anything was possible. So, 

so you start feeling like one big Wikipedia and one web 

with knowledge and everybody's kind of interconnected. 

Jon Krohn: 01:21:13 Cool. Yeah, it sounds like a great way to work. And I have 

some kind of experience with that in a smaller scale, 

where the first book that I wrote, Deep Learning 

Illustrated, it's in LaTeX, so not markdown, but we did 

everything in GitHub. So, I had Grant Beyleveld, who 

works on my data science team at my machine learning 

company, Nebula. He was a co-author on that book, and 

we were able to push updates and be able to very easily 

comment and be able to track changes through that kind 

of system. And I thought it was really intuitive and 

straightforward, and gave a great record of how things are 

http://www.superdatascience.com/669


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/669   
36 

changing in the system. So, what kinds of, other than this 

GitHub trick that you're suggesting for teams to work 

with, what kinds of tools do you use daily? Like, what's 

your programming stack like, personally? 

Adrian Kosowski: 01:22:06 So, I'm, you know, I'm, I try to be hands on, but I'm 

already like in between the two worlds. I don't have a 

super advanced stack just to say, I use one laptop screen, 

so this says something about me. If I'm working on one 

screen, it means I'm like a developer, but not, I wouldn't 

be able to aspire to certain circles.But for one of the 

things we have in our setup, it's a remote setup, which 

means that the develop machine develop everything is set 

up for, for remote development. So, everything is working 

on the same developer machine that's shared in the team, 

which means that I'm using the same setup as everybody, 

which is a stack meant to be productive. We do have 

some preferences in terms of IDs, I'm usually a VS Code 

person myself, like most of the team. 

 01:23:04 But this is just for, this is just the front and the rest of it 

is what comes through with our tech setup as, as defined 

by our CTO. So, I get to benefit from this, and actually 

having a remote work setup is something that comes 

through and having all of the team on board with it 

including for example, the persons who are doing sales 

demos to be able to, to have this workflow in which you 

can provide a demonstration on a remote machine that 

everybody has access to in a specific place, it kind of 

makes it much smoother to have a the workflow going all 

across the team. 

Jon Krohn: 01:23:46 Nice. And so that tech stack that your CTO defines, what 

is, what are the, what's the core programming language, 

for example, a Pathway? 

Adrian Kosowski: 01:23:54 So, Pathway is a Python front to Rust engine. We are 

neatly between the two. In general, a user of Pathway 

stays on the Python side, has the ability to use SQL, but 

which is compiled to Python. And then Python is meant 
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as the language for expressing most of the logic. It largely, 

how do you say it compiles out the equation in the sense 

that the Python code disappears, disappears, disappears. 

Sometimes some function calls survive, but to the extent 

possible the Python operations are replaced either by 

[inaudible 01:24:32] or by Nuba, depending on the case. 

So, it gets low level and GIL lock, like lock [inaudible 

01:24:40] and so on. So, there are no, there are no 

bottleneck there. And the, the computation is taking care 

of on the Rust side. 

 01:24:47 So, the team is largely either on the Python side or the 

Rust side. We do have an enterprise offering, which also 

includes dashboarding layer to be able to present nicely 

interconnected dashboards which allow for dataset 

exploration on top of what's made available by Pathways. 

So, Pathway does for data enrichment, puts forward 

tables of data that are ready for business intelligence for 

business analysts to work with. And we demonstrate this 

through a SQL layer with several hundred dashboards 

depending on the data model and logistics. It's several 

hundred that we can propose to clients or to even data 

engineers, data teams on the client's site to customize for 

their own needs or that we can customize. So, there's a 

certain SQL layer to it as well. 

Jon Krohn: 01:25:48 So, the Python makes perfect sense to me as the, what 

you describe as the front-end to your product, because if 

this is designed primarily for data scientists, machine 

learning engineers to be using Python is the lingua franca 

of data science and machine learning. So, it makes 

perfect sense. When you were deciding to work with Rust 

behind the scenes, so it's a functional programming 

language, it's one of the most popular functional 

programming languages today. But how did you make 

that particular decision that this would be the right 

language in the back-end? 

Adrian Kosowski: 01:26:18 I would say that the decision took itself because at the 

same time, several people with similar mindsets, some of 
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them on our team, some of them are also involved in 

open-source projects decided to make Rust the language 

of choice to it has a certain number of advantages also 

from our perspective in terms of of the quality we can 

deliver, we can be sure to deliver. But just, just to say 

that let's say theR rust ecosystem has gone to a degree 

where it's actually just as easy, if not easier, to find a 

data stack with a Python front-end, which has a Rust 

backend or Rust data representation. So, Polars, for 

example, as a Pandas replacement, this means that we 

are not, we are not losing anything by having to interface 

just a bit more to the C part of the world. 

 01:27:40 It's still possible. It's just not a big deal for us to have a 

slightly more complicated glue to see C libraries. It's not 

that it would be a major argument in the discussion, and 

other than that, if we have folks who are on board who 

are willing and happy to use Rust and deliver better 

quality in Rust, it's a big gain. There are some anecdotal 

places where last safe typing is causing us some extra 

work, but at the end of the day, everybody's happy with it 

as well, so- 

Jon Krohn: 01:28:19 Got it. Nice. And so we know from this episode, and also 

from your previous appearance on the show back in 

episode number 632, that you're a brilliant person. You 

can go really deep into the technical weeds on a wide 

variety of topics up and down the technical stack from the 

low-end code, all the way to having a product work well 

for a user. So, I think a really interesting question for you 

is if there is some kind of approach that's up and coming, 

it could be maybe if it happens to be data science, that'd 

be ideal, but some kind of approach or technique or tool 

that you think is emerging that our audience should 

know about and be excited about in the years to come. 

Adrian Kosowski: 01:29:12 This is actually a big question, and now you've made me 

feel like that I have to take care of a prediction, I like, 

because like 10 years now- 
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Jon Krohn: 01:29:27 Well, yeah [crosstalk 01:29:25] It could be something, just 

something that's happening now, that our audience 

should know about, that maybe they wouldn't hear about 

elsewhere. 

Adrian Kosowski: 01:29:36 I think one of the things that I should say as a product 

person is that productivity is important. And the kind of 

drive around productivity that's been the Silicon Valley 

DNA, essentially, it's like everybody reorienting towards 

productivity is here to stay. And this is something that we 

see as well also with the let's say for B2C applications of 

artificial intelligence, they're very much oriented towards 

increasing the productivity of people. So, it's actually like 

B2C or B2B from the sense, from the point of view of of 

being a productivity tool at work or a productivity tool in 

our personal lives. And this is still there. And I would 

personally also want see the aspects of growth of learning 

methods that kind of counterbalance this with for 

example, energy efficiency of the ability to do low energy 

computing and to take into account certain other of 

machine learning models beyond let's say what, what 

LLMs are capable of delivering. 

 01:31:22 So, I think I'm one of those who will be pushing for the 

so-called niche in the sense of the number of applications 

that you see, but one which has an enormous value tied 

to it from the point of view of both data processing and 

enterprise, and behind the delivering value behind the 

scenes, and helping guide people, organizations towards 

more informed decisions, towards better insight. So, it's 

more of the data insight part of the world. That's kind of, I 

don't know if this makes sense. 

Jon Krohn: 01:32:05 Right, right. So, so your, I think your main point is that 

there's a lot of focus on productivity. So things of course, 

like ChatGPT, this is seen as a productivity tool and you 

made the joke that made this makes it easier to write 

papers as an academic. But what you're saying is that 

there's still a big gap in being able to get insights 

automatically from data. 
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Adrian Kosowski: 01:32:26 I'd say this is for case, and I'd say we are missing 

something. We are missing some blocks. We are missing 

some bricks to be able to bridge the two worlds. For the 

next five years, I'd say that the type of insights that we'll 

be getting will still be based on pre-deep learning era 

models, predominantly that is the ability to put these 

models, which into place in the right way to deploy them, 

to make them work in an, from an operations perspective, 

MLOps, [inaudible 01:33:05], that's the big effort. And 

once we've bridged that effort we will be left with this this 

question whether we can get, you know, human level 

insight out of a system that's performing too much data 

analysis for human to actually to churn through. So, here 

we are still very much in the range of decision support 

tools on the enterprise side. We have not made this 

transition from decision support to like something further 

than this. And I think there's, it's because the ingredient's 

missing. It's not just with nobody's tying, it's, it's 

something's missing. 

Jon Krohn: 01:33:52 Nice. Cool. I love that insight into the missing insights in 

automation. All right, so Adrian, I've already taken way 

more time than I promised you I would. So, thank you 

very much for being generous with your time today and 

sharing so many of your insights with us. At the end of 

every episode, I ask for a book recommendation. Do you 

have one for us? 

Adrian Kosowski: 01:34:17 Book recommendation. Wow. For book recommendation, I 

yeah off the top of my head actually, if you mentioned 

Rust and we were started talking about like learning 

Rust. If you want to learn Rust, then Rust Documentation 

is kind of like a book. And I think it's actually an amazing 

experience. So, this is just something just to say 

spontaneously that the Rust book is where, it's where 

you, the difference between a documentation and a book 

has blurred itself. That's, that's one of the reasons why I 

like this. But in terms of like looking at my mini bookshelf 

in this office, I'm as you said, I'm a complex networks 

person. So, anything related to complex networks always 
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is a good good thing to read. Complex networks are 

everywhere from real world systems, social networks, our 

brains, everything here as a complex network. I'd say for 

An Introduction by Newman, or Newman and co-authors 

is always a good thing to do if you haven't read it. And 

some of the more recent works out. Jon, I think you may 

have actually a better overview here. 

Jon Krohn: 01:35:40 Yeah, I don't know if I have a better suggestion on 

complex networks books but yeah, I don't really know 

that space at all though. Sounds fascinating. I do want to 

be thinking about the world more in terms of ant brains, 

so that sounds like one I should be picking up. 

Adrian Kosowski: 01:35:56 One, one thing I, I'd say is actually when you take any 

networks book, complex networks, so whatever, they have 

these pretty covers, you know, there's always this- 

Jon Krohn: 01:36:03 Network diagram. 

Adrian Kosowski: 01:36:03 Yeah. If you have one of both, it usually makes for a good 

read. It explains like anything- 

Jon Krohn: 01:36:12 You can judge a networks book by its cover is what you're 

saying. Awesome. And so Adrian, how do people follow 

you after this episode? If they want to glean more brilliant 

insights from you after the episode, where's the best place 

to track what you're up to? 

Adrian Kosowski: 01:36:29 So, I'm, I have no, like, ambition, aspiration to be like an 

influencer. I'm happy to chat exchange with anyone. 

You'll find me regularly on our Pathway Discord, so as 

discord.gg/Pathway, of Pathway. I'm there. I mean, I'm 

happy to exchange with anyone from the community who 

has like an interest in any topics which are broadly 

related to reactive data processing and so on or to 

network science topics and how they've been treated. You 

can find me on LinkedIn. You can find me on Twitter, at 

last. 
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Jon Krohn: 01:37:09 Nice. All right, sounds great Adrian. Yeah, so that's a very 

nice offer for listeners. You can reach out to Adrian on the 

Pathway discord and it sounds like at this time he has 

bandwidth for individual questions, pick his brain. 

Hopefully that's still the case when this episode is 

published. And yeah, so thank you so much Adrian for 

making that offer as well as the hoodie offer going all the 

way back to the beginning of this episode. And thank you 

for being so generous with your time as well. And yeah, 

we'll have to check in with you on your journey and the 

Pathway journey again in the future. 

Adrian Kosowski: 01:37:46 My pleasure entirely, Jon, thanks for having me and hope 

to see you at a conference sometime soon. 

Jon Krohn: 01:37:51 For sure. That was an incredible episode with a brilliant 

guest. I hope you enjoyed our conversation as much as I 

did. In today's episode, Adrian filled us in on how batch 

processing is associated with training machine learning 

models at discreet intervals. This could be daily or 

monthly or whatever, while streaming processing allows 

for computationally and cost-efficient real-time ML model 

training. He talked about how reactive data processing 

allows an application to react to data it hasn't 

encountered before handling it seamlessly and potentially 

saving firms vast sums such as in financial fraud 

detection situations or with complex evolving systems 

such as the global supply chain network. He talked about 

how the transformer operations that transform data 

during data flows can be dynamic or fuzzy when they're 

powered by machine learning. He talked about how 

Pathway elected to go with a Python platform interface to 

be easily usable by machine learning practitioners while 

they chose Rust for high performance behind the scenes. 

 01:38:52 And he talked about the big commercial opportunity of 

filling in the missing bricks for extracting useful insights 

automatically from data. As always, you can get all the 

show notes, including the transcript for this episode, the 

video recording, any materials mentioned on the show, 
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the URLs for Adrian's social media profiles, as well as my 

own social media profiles at superdatascience.com/669. 

That's superdatascience.com/669. I encourage you to let 

me know your thoughts on this episode directly by 

tagging me in public posts or comments on LinkedIn, 

Twitter, or YouTube. Your feedback is invaluable for 

helping us shape future episodes of the show. And if 

you'd like to engage with me in person as opposed to just 

through social media, I'd love to meet you in real life at 

the upcoming Open Data Science Conference East, ODSC 

East, which will be in Boston from May 9th to 11th. I'll be 

doing two half-day tutorials. The first one will introduce 

Deep Learning with hands-on demos and PyTorch and 

TensorFlow. And the other tutorial which is brand new, 

will be on fine-tuning, deploying, and commercializing 

with large language models, including models like GPT-4. 

In addition to these formal events, I'll also just be hanging 

around and grabbing beers and chatting with folks. It'd 

be so fun to see you there. 

 01:40:04 All right. Thanks to my colleagues at Nebula for 

supporting me while I create content like this 

SuperDataScience episode for you. And thanks of course 

to Ivana, Mario, Natalie, Serg, Sylvia, Zara, and Kirill on 

the SuperDataScience team for producing another mind-

blowing episode for us today. For enabling that super 

team to create this free podcast for you, we are deeply 

grateful to our sponsors whom I've hand selected as 

partners because I expect their products to be genuinely 

of interest to you. Please consider supporting this free 

show by checking out our sponsors links, which you can 

find in the show notes. And if you yourself are interested 

in sponsoring an episode, you can get the details on how 

by making your way to jonkrohn.com/podcast. And 

thanks of course to you for listening. It's because you 

listen that I'm here. Until next time, my friend, keep on 

rocking it out there and I'm looking forward to enjoying 

another round of the SuperDataScience podcast with you 

very soon. 
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