

Show Notes: http://www.superdatascience.com/669
1

SDS PODCAST

EPISODE 669:

 STREAMING,

REACTIVE,

REAL-TIME

MACHINE LEARNING

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
2

Jon Krohn: 00:00:00 This is episode number 669 with Adrian Kosowski, Co-

Founder and Chief Product Officer at Pathway. Today's

episode is brought to you by Posit, the open-source data

science company, and by AWS Cloud Computing Services.

 00:00:17 Welcome to the SuperDataScience podcast, the most

listened-to podcast in the data science industry. Each

week, we bring you inspiring people and ideas to help you

build a successful career in data science. I'm your host,

Jon Krohn. Thanks for joining me today. And now let's

make the complex simple.

 00:00:48 Welcome back to the SuperDataScience podcast. Today,

the positively brilliant researcher and entrepreneur, Dr.

Adrian Kosowski returns to the show to give us a taste of

what the future of machine learning looks like. Adrian is

Co-Founder and Chief Product Officer Pathway.com, a

framework for real-time, reactive data processing that is

based in Paris. He has over 15 years of research

experience, including nine years at INRIA, a prestigious

French computer science center, leading to the co-

authorship of over 100 articles in a range of fields,

theoretical computer science, physics, and biology, for

example, and he's covered topics in those papers, like

network science, distributed algorithms, and complex

systems. He previously co-founded and led business

development for Spoj.com, a competitive programming

platform used by millions of software developers, and he

obtained his PhD in computer science at the ripe old age

of 20.

 00:01:38 Today's episode will appeal primarily to hands-on

practitioners like data scientists, machine learning

engineers, and data engineers. However, we do our best to

break down technical terms and provide concrete

examples of topics so that anyone can enjoy learning

about the cutting edge in training machine learning

models. In this episode, Adrian details what streaming

data processing is and why it's superior in many ways, to

the batch training of machine learning models that

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
3

historically dominated data science. He talks about how

streaming data processing allows highly efficient real-time

model training, how reactive data processing enables data

applications to react instantly and automatically to never

before seen input data, potentially saving firms vast

sums. He talks about when it makes sense for computer

scientists to become a product leader like he did. He talks

about why Pathway selected the particular programming

languages they did for their platform, and the big up-and-

coming opportunity for data and machine learning

startups. All right, you ready for this mind-blowing

episode? Let's go.

 00:02:40 Adrian, welcome back to the SuperDataScience podcast

for your first full-length episode. You were here...we met

at the Open Data Science Conference West in San

Francisco, back in the northern hemisphere autumn. And

you recorded an awesome episode on Liquid Neural

Networks - that's episode number 632. Fascinating

technical topic. Adrian, where in the world are you calling

in from today?

Adrian Kosowski: 00:03:09 So, I'm based in Paris. I'm calling in from just outside

Paris, France, from a place which used to be the

countryside, but is now meant to be the Silicon Valley of

France.

Jon Krohn: 00:03:19 Oh, yeah. And it's the Pathway Office, is that right?

Adrian Kosowski: 00:03:22 It is. It is.

Jon Krohn: 00:03:23 Nice. And, so you're the co-founder. You're a co-founder,

and you're the Chief Product Officer at Pathway, which is

a reactive data processing framework that allows people

to create real-time data products much more easily. So, I

know that we're going to get into a lot of what Pathway is,

but before we even get into that, I want to let our listeners

know that you very kindly offered, you're offering 10 free

hoodies to the first people that respond. So, when I, when

we release this episode, it'll be, it's always on Tuesday

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
4

mornings from a North American perspective, it'll be the

morning, and I post on LinkedIn from my personal

account, a big post about what the episode's gonna be all

about. When I make that post, I'll include in it, to say, the

first 10 people that ask for a Pathway hoodie, get one,

and you're offering to ship them anywhere in the world.

So, it's very kind. Thank you, Adrian.

Adrian Kosowski: 00:04:20 It's our pleasure entirely. These are really good hoodies.

We hope you'll be satisfied.

Jon Krohn: 00:04:24 Yeah, apparently they're hoodies so good that you'll want

them, even if you're in a very hot climate.

Adrian Kosowski: 00:04:31 That's what they say. We also do software, but we do

hoodies most of the time.

Jon Krohn: 00:04:39 Yeah, so when you guys aren't designing hoodies tell us

about the software that you make. So, you have a reactive

data processing framework. Yeah. Tell us what that

means and what can you do with it.

Adrian Kosowski: 00:04:49 Yeah, sure. So, reactivity is all about the art of dealing

with changing data in such a way that you don't have to

worry too much about the processing part when data

changes. I think if you want to be formal, there's probably

some dictionary or encyclopedic definition of reactivity

which will tell you it's about being declarative, declarative

in a programming sense, like explaining the logic without

imperatively saying what to do at every step of a data

transformation, without explaining vocals in like a

functional programming sense, explaining what the

transformation should be. And that's about the essence.

So, it's really combining the ability to be declarative with

the ability to process data changes automatically in an

efficient way. So, that's a notion known as incrementality.

 00:05:48 It's the idea that when data changes, you don't have to do

a full recomputation of over models, of over things that

you've designed in your data pipeline or in your data

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
5

science project. You just do a minimally computation to

react to the way data changes. So, I guess the most best

known example of a reactive system out there is your

spreadsheet, call it Excel sheets, whatever you prefer,

software, you define the rules on the data, and when the

data changes, the cells update. So, this is like one

example. It's a data processing example. It's not one that

scales very well, but it's an example of data processing.

And actually, since spreadsheets came in, I think nobody

has been able to fully replicate the success of this type of

approach at scale. And we come with, with our attempt. I

should say that reactive reactivity is a concept that's very

well known, very familiar to frontend developers, if you've

worked with JavaScript TypeScript.

Jon Krohn: 00:07:02 Yeah. It's even probably the most famous framework right

now for front end development is called React.js.

Adrian Kosowski: 00:07:09 It is, and the others that don't have React in their name

only active, nonetheless. All of them are. And like the, the

kind of place this has got front-end developers to is that

you when designing a front-end system you don't have to

do as much event handling as you would do 15 years

back. So, some of you may remember having to write

things like on-the-click events to describe the state

change of a button, you know, when you click, you have

to do it, and so on. And these days in front-end

development, you don't do it that much. Surprisingly in

data processing, even data processing at scale, if you

want to work in a real-time setup, you want to work with

data that changes or with streams of event data, a lot of

the time you still find yourself doing the equivalent of on-

the-click-do or something like this.

 00:08:06 The back-end equivalent is on-data-change event or on-

arrival of a certain packet of data do. And this is

something that has to be done behind the scenes, no

question about it. It's just that we don't necessarily want

the developer, be it the data engineer or a data scientist to

be exposed to the pain of doing this type of on-something

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
6

event processing after they've already had to put a lot of

effort to design the system just to get their job done, to

create a model or something.

Jon Krohn: 00:08:44 So, it seems relatively straightforward to me to

understand in the case of a user interface, we have a

browser app that is reactive to somebody adjusting how

wide the browser is, or whether they come in on a mobile

browser or a tablet or a desktop, that the website

automatically adjusts, or as you're saying, to behaviors to

somebody clicking on something and the application

reacting to that. In the case of data changing, what does

that mean? Like how do the data change that are flowing

into a machine learning system? Like, the machine

learning system it could be handling different kinds of

data types, or what does, yeah, what does it mean when

the data changes?

Adrian Kosowski: 00:09:35 So, the most straightforward setup, I'd say, is when the

data type does not change, you just have to deal with new

data, the same type, just data that you haven't seen

before. If you're a data scientist, like the ideal world is

when the data sample that you're working with is the

actual data that will be, that has to be analyzed. When

you're in the online ever-changing world where new data

comes in, this is never the case that the data sample that

you look at, at the time of designing your model is for one,

for which you need to do the insight. So, where, in some

sense, where at least for the testing data, the real-world

testing data, is not known to you. Sometimes even in real-

world scenarios, it may be the case that the training data,

so to speak, is not known to you. So, your model is

retraining itself or adjusting to new incoming data.

Jon Krohn: 00:10:39 Online learning.

Adrian Kosowski: 00:10:40 Online learning and, and things like this. So, this is for

the general setup. If you like diagrams, you can picture

data inputs on the left, data outputs on the right, and

your data pipeline in between, and whatever fresh events

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
7

come in from input need to be taken into account. If you

want to make life fun, fun in, in a architecture sense, you

can also put a human in the loop, somebody who's

providing feedback on how your model is performing and

saying, actually, we should tweak this parameter. For

example, it's like, you know, it's, today we need to adjust

because it's a, we have a special day, and something like

this. Some parameter for your forecasting prediction,

anomaly detection model. Or the user can say, actually in

the training data, the was a mistake, and we need to pull

out the training data point and say, look, this should

never have been obtained like this, or the label should

have been changed. Or a certain class of automated

inputs which entered the system may have entered with

incorrect values. For example m, there was some

confusion between m denoting meters and miles. Of data

that input needs to be rescaled, and you have to sort of

unlearn the data that came in previously and relearn with

the new data. So, anything, anything is kind of possible

in the sense of data changes for the system.

Jon Krohn: 00:12:17 So, in the past, on the podcast, we've talked about issues

around things like feature drift, where, you design a

machine learning model to be able to handle the kinds of

training data that it's encountered in the past, but then

the real world changes. And so the inputs, the features

that are coming into the model, so you know, you

described a flow from left to right. So, on the left-hand

side, in those data inputs, the inputs are fundamentally

changing, the structure of the inputs is changing. So,

even though, as you say, it's the same data type, you

know, it's still a 16-bit float value, or it's a, you know, it's

an integer, whatever, the features are now in a range that

are outside of your training data because the world has

changed. So, is what you are describing, this reactive

data processing, it's designed to allow your machine

learning models during online learning to be able to adapt

to this feature drift automatically.

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
8

Adrian Kosowski: 00:13:25 So, this is part of the story. I think reactive data

processing should be treated very broadly and if you start

implementing it in the larger system like data pipelines in

enterprise, which are processing event data, the start of

the story is in data engineering. The end of the story is in

analytics. In order to benefit fully from this type of

framework, from real-time data processing in general, it

has to be put into place like end to end, or at least it

helps to put it into place, end to end. And the, the

models, the analytics models, the machine learning

models that come in are kind of the cherry on the cake,

but the one that allows it to [inaudible 00:14:13], a lot of

value. So, we make sure to make this possible.

 00:14:17 This is just to say that in a strictly machine learning

context this would be a very, let's say, a good application

and at the same time, an ambitious one when you get to

models which are sufficiently advanced to be very much

aware of problems like feature drift versus, let's say, an

intermediate class in somewhere in between engineering

and more advanced machine learnings of models which

have a certain time horizon, a time window in which they

learn, and they are updated as this time window moves

ahead. I'd say this is like first more natural example in

the real world project that you'll be looking at for last few

months of data, some kind of moving average on the data

and trying to adapt to it. So, indeed it may be the case

that we get into questions of models getting outdated and

needing updating, model versioning, and so on. But this

is some heavy machinery which comes in relatively late in

the project. A lot of the time it's actually possible to just

adapt to the structure of the data itself by having a model

which knows how to adapt to the structure of the data,

which has this capacity to encompass horizons to be

somehow scale-free with respect to the nature of the data.

Jon Krohn: 00:15:54 Nice. Every company wants to become more data-driven,

especially with languages like R and Python.

Unfortunately, traditional data science training is broken.

The material is generic. You’re learning in isolation. You

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
9

never end up applying anything you’ve learned. Posit

Academy fixes this with collaborative, expert-led training

that’s actually relevant to your job. Do you work in

finance? Learn R and Python within the context of

investment analysis. Are you a biostatistician? Learn

while working through clinical analysis projects. Posit

Academy is the ultimate learning experience for

professional teams in any industry that want to learn R

and Python for data science. 94% of learners are still

coding 6 months later. Learn more at Posit.co/Academy.

 00:16:40 So, let's try to make this example a bit more concrete by

going into let a specific use case. So, you and I were

planning on later in the episode talking about global

supply chain networks and how the pandemic broke

these, and how reactive data processing combined with

IoT (Internet of Things) hardware could make, help make

rather global supply chains more resilient to abrupt

delays and shocks. So, maybe let's dig into that specific

use case now, so that as we kind of address other

questions around how reactive data processing works, we

can like tie into the specific concrete example.

Adrian Kosowski: 00:17:18 Yeah. So, actually, we started Pathway working closely

with actors in the logistics industry, working to improve

global supply chains and global transportation patterns.

Logistics is a pretty fascinating area because if you look

at the importance for value in the scale of the industry,

it's about something like 10% of a world economy. It's, so

it's really big. It's highly concentrated, and a lot of a value

is in international trade, trade that goes on containers,

tucks, large vehicles. And it's in some sense from a data

processing perspective, when we were starting, this was

largely terra incognita. It was of a new world of analyzing

this type of data patterns related to logistics assets.

 00:18:12 What IoT gives in this setting is the ability to trace moving

assets, be it containers, trucks, parcels, you name it, end

to end. That is you attach a sensor and you have a whole

trace, the whole tech of an asset that's moving. And this

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
10

leads to an interesting situation in which something like

10% of world industry has some of its most important

data lying in one data schema, one data format, which is

essentially a big table of events related to moving assets.

That's the table whose columns are something like

timestamp, asset ID, location x, y, or GPS latitude,

longitude, and for type of event that happened, whether it

was a kind of just a measurement of a location, whether if

it was a measurement performed by a IoT, for example, of

temperature, pressure, door opening, some kind of alert.

 00:19:18 And this kind of table actually captures a lot of other

things in logistics as well. For example, if there's the

facility where your parcels are being scanned, all such

scans events also enter in this type of table. So, you have

one kind of input data table, data schema, which seems

to capture everything that's happening, which is quite

unusable from the point of view of business intelligence

analytics and process monitoring and observability used

directly, just because it's super hard to query. It's hard to

express in the language such as SQL, a query on the

data, which would extract what's important. And the

important questions are related to process, things that

are happening. So, for example, a logistics client may be

interested in knowing what are the risks of anomalies of

given type, like shocks happening to your sensitive

pharmaceutical shipments in the next two days on a

given route, let's say, Rotterdam to New York.

 00:20:32 And, if you look at the data inputs, all the information is

there. If we've given a lot of man years and a lot of

patience, you could probably get it in the end by hand.

But, it's not all that easy to extract and automate over

global processes. So, that's where we started. We started

working with a process of enriching this data

automatically, converting the schema to add structure to

it in such a way that is actually possible in real-time to

get an enriched data schema, which is queryable, and

which reveals information about the process. A lot of

aspects to it related to, first of all, trajectory mining,

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
11

understanding how things flow, a uncovering

automatically the key locations, so, this is like automatic

Geofence detection in the [inaudible 00:21:28] of the

sector. It's about understanding anomalies, congestion,

delays as they happen or even before they happen, and

putting into place predictive models.

 00:21:42 So, there are many steps here. And already getting all of

this done in a batch setting, a setting where you have all

the data available, like just historical data, is a challenge

to express it cleanly and to get an analysis of a snapshot,

so to speak, of the data. And it gets extremely complicated

if you, on top of this, you'd would want to manually

create logic in a way which would take into account

changing data. It becomes a task which is both tedious

[inaudible 00:22:24] requires a lot of duplication of logic

between the, let's say, the offline case and the online case

and so on.

 00:22:30 So, our effort was on the one hand to automate this, and

on the other hand also to figure out what parts, what

models in machine learning, what transformations of

data, are actually amenable to this type of approach.

Basically say, forget what cannot be done, focus on what

can be done here now, and make it possible to make this

robust. So, just to give you an example of the types of

data processing routines that we have. We've designed to

work robustly across different modes of transport, be it

ship, truck, train, container, or vehicle even working for

small assets like parcels, sometimes with animals,

sometimes with public transportation. So, basically to

have models which work with very little or minimal

awareness of what is actually being traced, what type of

acid is being traced to allow changes to this process, to

allow new modes of transport to be introduced, to allow

changes to the logical process.

 00:23:40 If you follow like what your couriers and delivery people

are up to before Christmas, it's actually amazing how the

whole logistics network adapts, there are new depots

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
12

being opened, temporary depots. There's changes to the

process. Things are happening completely differently in

peak season. And if you want to make sense of it, you

have to have a system which is able to take into account

these changes as they happen. New depots open? Okay,

it's not something that you'll want to manually introduce.

It's something that you have to kind of capture from the

data.

Jon Krohn: 00:24:17 Wow. Okay. Yeah, so, that is very concrete and crystal

clear. So, these real-time data products, reactive data

processing frameworks like Pathway allow data models to

be applied to complex systems like a delivery system, like

the global supply chain network. And it's reactive

automatically to things like vastly greater volumes in

peak season at around Christmas time, heading into

Christmas time, including things like hubs coming online

that previously weren't there. And so you don't want to be

going to your data scientist and saying, "Hey, a new hub

opened up yesterday. It's December 1st, and a new hub

opened up. We need you to retrain all of the machine

learning models that we had to be able to account for this

new hub. And then the very next day, two more hubs

open up, because we're one more day closer to Christmas,

and you're like, sorry, data scientists, we got two more

hubs. We need to retrain that data model again". And

every time the data scientists are like, oh, this is gonna

take like a week. And so, instead with a reactive data

processing system, it's flexible to these kinds of changes

automatically.

Adrian Kosowski: 00:25:36 Yeah. And that's exactly the [inaudible 00:25:39]. It's, it's

kind of also changes the whole workflow for way the non-

technical user can interact with the application. So, you

can have an expert in the domain who is working with a

system. And rather than asking data scientists to update

models, they either get, at a case of a simple model you

can actually redeploy the model as it happens, or in some

case, you get a question whether you want to update your

model, you update your data. So, if we talk of these hubs

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
13

that open at the beginning of the day whoever's managing

the dashboarding part of the solution gets information

that "we have detected, 20 new hubs, which opened since

yesterday, please approve or correct errors". And

essentially the work of this person is more in fine tuning

or fixing things that didn't, that were not detected with,

let's say 100% accuracy or performing small collections to

the automatic labeling that's being done, rather than

actually introducing [inaudible 00:26:50] the change

process manually.

 00:26:54 Just to say from our perspective this is where we started

out with. So, we started with one concrete data product in

logistics, and this is our flagship data product. It's being

used by major companies, freight forwarders like DB

Schenker, which is third worldwide largest freight

forwarder in the world by the French Postal Services,

which also have a wide international network on this

operating in other countries as well. So, the kind of use

there is what we see and we feel, at the same time what

we are delivering is the visibility of data scientists and

data engineers to work in the same way as we do. So, we

want this, we want to share the experience, we want to

share the experience both with everybody, with a wide

community, and also with the data teams of our clients.

To work closely with them, to allow them to modify the

data pipelines, to include new data sources. So, it's really

very much about giving this full development experience

and having it work like having it work as a developer tool.

Jon Krohn: 00:28:12 Nice. That's crystal clear. And so, now that you have

expanded beyond that initial use case, your most

developed product around global supply chain networks,

what other kinds of use cases are people using this

reactive data processing for?

Adrian Kosowski: 00:28:27 So, this is interesting because like the use cases

expressed in our terms, so, I'm assuming we are

discussing data here, and data like data audiences are

extremely horizontal. They're not like tied to industry-

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
14

specific verticals. So, many of, many of us change jobs,

you know, between different companies, like going from,

from healthcare to, let's say whatever, transportation or

manufacturing. But for the kind of use cases that exist

from a, you know, from a data science perspective are

pretty consistent [inaudible 00:29:07] anomaly detection

in real-time, predicting anomalies, detecting fraud, which

is the type of anomaly detection, and recommendations

online updated recommended systems. Some further

ones, which do appear in some cases of [inaudible

00:29:25] forecasting, and time series forecasting, plus

let's say some, that are further down the stream. But in

some sense, it's also a question of the most immediate

value, for most immediate, most immediate pain point is

really for one where you need to act quickly. And the time

horizon related to anomaly detection, to alerting is just

much, much shorter than the time horizon related to

updating forecast models typically.

Jon Krohn: 00:30:01 Right? So, I can imagine financial applications, for

example, where you're detecting fraud would be, a really

great use case.

Adrian Kosowski: 00:30:07 Yeah, financial applications are a nice one. It's also

interesting that you have several horizons in the financial

application. Let's say you are doing real-time transaction

processing, be it more on the major card processing actor

side or on the DeFi side. Either way, you have a window

of opportunity of two to three seconds to block certain

types of transactions. Those who have the user is still not

getting impatient. And then a post-processing like window

where you can still undo some transactions of try to fix

things. But things get worse from in the horizon of

seconds to minutes. So, this time horizon is actually very,

very short in this case.

 00:30:52 One that many of us in data know is related to monitoring

of health of systems of processes that are going on. So,

things around observability in process of server

monitoring in because the system reliability field. This is

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
15

an interesting use case, which is very special, but it also

gives, I think an idea of the kind of alerting that we are

looking at. If there's a human operator involved, you want

to react within your SLA time window, which will typically

be something like 15 minutes. This is the number that

comes up most often given guidelines of major companies.

So you have like 15 minutes to react, and the kind of data

that you have is how many minutes of this 15-minute

window that you as a human have to react, are eaten up

by the system being slow to give you the information. If

it's more than five minutes, you're really, really angry, but

maybe you could go from five minutes to three minutes to

30 seconds. Sometimes you increase for value there, and

you can actually do way, way better if you get this alert

faster.

Jon Krohn: 00:32:16 Cool. Are you stuck between optimizing latency and

lowering your inference costs as you build your generative

AI applications? Find out why more ML developers are

moving toward AWS Trainium and Inferentia to build and

serve their Large Language Models. You can save up to

50% on training costs with AWS Trainium chips and up

to 40% on inference costs with AWS Inferentia chips.

Trainium and Inferentia will help you achieve higher

performance, lower costs, and be more sustainable.

Check out the links in the show notes to learn more. All

right, now back to our show.

 00:32:53 All right, so now that I have a clear idea, and probably

our listeners have a clear idea of applications of this

reactive data processing, let's dig into it technically in a

bit more detail. So, a big contrast that comes up a lot in

the context of reactive data processing, and that even

came up in a recent episode number 661 with Chip

Huyen. So, there's this idea of batch processing versus

stream processing. And so, what's the difference from a

machine learning perspective between these two

processing modes, batch and streaming, and how does

that tie into reactive data processing?

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
16

Adrian Kosowski: 00:33:34 So, actually the, the answer that would be taken from a

reactive data processing perspective is that if you look at

time, time as something that appears in your data, if time

is an important feature for you, then it's an important

feature for you. And whether you are in batch or in

streaming, you should handle time. If time is not a

feature in your data then you should have a privilege of

not looking at time and the system will be able to handle

things for you. So, just to give a very concrete example,

let's take-

Jon Krohn: 00:34:15 Yeah, please. You just blew my mind.

Adrian Kosowski: 00:34:16 Let's take-

Jon Krohn: 00:34:17 If time, if you have the luxury of time, not mattering-

Adrian Kosowski: 00:34:21 Yeah. And it's actually something like time not being a

feature means for, for example, look at spam. What's a

spam message? A spam message is the same, like you see

spam, you recognize it, you'd read the same thing as

spam today, as in the week or in a month, right? It's

spam is, spam is like, there's no time aspect related to

spam. However it might be the case, that depending on

how the spammer is behaving, you may be able to detect

a spam message at some point or not. For example, when

somebody is sending a message for the first time, the

spam filter may still not be aware that it's spam. But after

a message has been sent 10,000 times, 100,000 times

your model for spam detection or a spam detection filter

will be able to figure out that something is amiss because

of a behavior of a spammer.

 00:35:18 Your messages are classified as belonging to a kind of

cluster component somewhere, which is spamish. And all

of this can be classified as spam, right? So, in this sense

what's happening is that the incoming data allows the

model to improve its classification decisions over time.

However, the logic of the classification process as such is

largely not tied to time. It can be...time doesn't have to

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
17

play a role in it. You can do a lot of things without

thinking about time. So, what the answer is in the

reactive setting, is that you could imagine that you have

access to all of your data in batch mode. Basically, you

have all of the input, you process it, you give the answers,

and these are the best answers you can have because

they are answers given with all the knowledge.

 00:36:20 And then if you launch the same code in a reactive

system, it'll be doing its best to maintain answers, which

are as good as possible given the current knowledge. So,

at the end of the day, it'll converge to the same outcomes,

which you would've had if you had had all the

information initially. And on the way, it'll be doing kind of

a best-effort classification based on whatever partial

knowledge it has. So, it may happen that a message

comes into your inbox, call it Gmail, for example.

Suppose Gmail has a reactive spam filter. It's classified as

non-spam, but five minutes later when new information

arrives it's, it becomes automatically reclassified as spam

and can be pulled from your-

Jon Krohn: 00:37:07 [crosstalk 00:37:07] Oh, wow.

Adrian Kosowski: 00:37:09 So, this is, this is the idea that you don't have to worry

about the deployment for way how things are going to be

you know, run, rerun. You don't have to worry about how

the data streams unfold over time. You just designed the

logic and you put it in the system, and you somehow you

were released of from the worry about of the streaming

data.

Jon Krohn: 00:37:32 Cool. All right. So, I know we're getting there, but, so how

does this, we haven't, like concretely defined this

difference between batch and streaming?

Adrian Kosowski: 00:37:42 Yeah, so batch is the concept that your computation is

run and scheduled. I think batch, orchestration,

scheduling, ... These are concepts that all go together,

they are part of the same mindset, it's one where you look

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
18

at the data as it is now, you run a computation on it, or

you run some processing on it, something happens eight

hours later, 24 hours later, the scheduler says, rerun for

batch, you rerun for batch, and things get updated. So,

it's this type of mindset.

Jon Krohn: 00:38:18 To give maybe an extreme example that gives a clear

sense of this, when people have been using ChatGPT

since it came out in late 2022, it has a modal that comes

up and gives you all kinds of warnings. Like this is

experimental, but one of those warnings is that the data

hasn't been refreshed since 2021 or something like that.

And that's because the underlying model, so up until very

recently at the time of recording the most common

natural language model the people were using under the

hood of ChatGPT, was GPT-3.5, and this GPT-3.5 had

been trained on a batch of data that was current up until

2021 at some point. And so there was this big batch of

data, and then it took, who knows, maybe weeks of

training, maybe even months, I don't know.

 00:39:12 GPT-3.5 is so large that the whole processing pipeline

could have taken months to do, particularly when they

want to add in all these kinds of safeguards around using

it ethically. And so, that model is not streaming. It's very

much the opposite. And you could take that same model

architecture and update it in 2022 at some point, but it's

only getting like this annual update on a batch basis. So,

you have these big batches of data, and so you're

describing the situation where the batches could be much

smaller, where it could be every eight hours or every 24

hours that we have in machine learning model in

production. That is where the model weights are being

updated from new data. So, that things like a new hub in

the delivery network that came online in the last 24 hours

is now going to be handled. You know, we have some data

regarding this hub and we can be handling it. Yeah. So,

that, so this kind of gives the sense of batches and how

we can have big, big gaps between model refreshes or

small gaps. And then streaming is a completely different

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
19

kind of perspective where it's like data point by data point

in real time being updated.

Adrian Kosowski: 00:40:31 Yeah. Streaming is exactly this perspective where the data

flows in a manner where when the new data point comes

in, you handle it. So, if I think like, to be perfectly, like to

take a, maybe a human perspective and batch and

streaming for the inherent preference for, for looking at

batch or looking at streaming depends very much on

what, what world you come from. If you're more in the

mainframe or static database type of thinking, you

probably have a natural preference for looking at

computational systems as batch systems. If you are more

in the microservice design APIs, things communicating,

data flowing, your natural preference, your first approach

is more around working with streaming data. And each

type of system, whether it's around batch processing or

around event-driven stream processing has very different

characteristics.

 00:41:52 In general being event-driven has the advantage, the

obvious advantage of lowering latency because you can

react to new data as it, as it arrives so your models can

update. The difficulty is in making non-trival logic work.

And by non-trivial, I mean actually doing something like a

database join which is already impossible in most data

processing frameworks to maintain a join of two data

tables, join as you'd see it in SQL and Pandas or

whatever. This is something that's hard to do in real-time,

let's say, and that requires a special framework, which

has to know how to handle the joint to be able to do it.

So, back in 2019, it was messy to do. Now more and more

frameworks are catching up, but this is about the

forefront in terms of tooling as what's possible, what kind

of difficulty of processing is possible in real time.

Jon Krohn: 00:42:59 Cool, cool. Yeah, so it sounds from, you know, I come

from this background of being a scientist. And so, we ran

discrete experiments and you get a batch of experimental

results. And so, I'm used to this idea of having like, this

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
20

specific table we're like, okay, experiment one is done. I

have my set of data, it has this many rows because that's

exactly how many human participants we had in this first

study. And then it's just kind of static indefinitely. And I

train a model on it, might then publish the results of the

model. I might even make the data open-source, make it

available freely online, put it into the public domain, and

then anybody can use my perfect table of data from

experiment one that never changes. And so, yeah, so I

come from this batch background. It's probably the case

that people that are used to the kind of streaming

situation that you're describing, people who are used to

microservices, they're probably more likely to come from a

computer science background or a software development

background.

Adrian Kosowski: 00:44:12 So, I'll, I can give you an example because right now we

are doing some experiments on our side. We are, we're

running benchmarks of Pathway against other

frameworks. So, we are doing an experiment and in, if in

some sense these experiments, let's say last weeks, they

take weeks to run, and you need multiple repetitions of

an experiment to get to liable data to be able to take, let's

say the medial of the data points or some average or

whatever. But imagine you just wait for the first run to

complete, the first time of your experiment, and you

already have a data source, which can be like, let's say

Google Sheets or Excel. Google Sheets is a better idea

because it's kind of more online, more live, where you've

put your experimental results there.

 00:45:03 And at this point you can use whatever plotting software

you like let's say Tableau to get some first charts out of it.

And now suppose you continue running the experiment

and as new data points arrive, you get larger and larger

sample and your dashboards are live, they get updated as

the sample goes. And for example, once you've got five

runs, a line, which was a bit noisy at the beginning, has

kind of smoothed out because you've lost the statistic

noise level has been reduced. So, your dashboard is a

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
21

kind of life dashboard on top of a scientific experiment.

So, in some sense, in this way, you can look at a scientific

experiment being done in streaming mode with new data

is coming in, it's updating, fixing the dashboards and at

some point you press stop and this dashboard is

production ready.

 00:46:02 And this time is a good point to say that the fact that you

are in streaming mode does not mean that you cannot

look at data back in time. It's a bit like with most of our

productivity tooling that we're using these days, we are

used to the fact that you can look at the version history,

you can go back some number of edits, you can go back

to a past snapshot or past version of the system. And this

is especially important in distributed systems which are

serving answers to requests. And you have to be

absolutely sure that you are serving answers based on a

consistent version across machines. Meaning that you are

referring to one snapshot, let's say from a few seconds,

few minutes back. But if there's a problem with the

snapshot, you could also roll back to a past snapshot,

maybe 20, 30 minutes back or even further. So, there a

kind of notion of snapshotting of a past. But you're

working inherently with a kind of timeline of, of things

that move, move forward.

Jon Krohn: 00:47:10 So, is this, this constant movement, this constant

timeline, is that maybe the most challenging aspect for

machine learning engineers when they're trying to

implement streaming applications?

Adrian Kosowski: 00:47:23 If you were using an API which has streaming in the

name, then it's an added challenge. It's an, it's a second

challenge. I wouldn't want to say it's the biggest challenge

in terms of some kind of ingenuity being conceptually the

most difficult that would be undermining the, the effort

that's needed to actually get something going in machine

learning, which is enormous, but it is an enormous

challenge in terms of system deployment, system

maintenance, making sure there are no bugs, making

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
22

sure this is actually feasible to them. So, the, the industry

standard for now is that going from batch prototype, that

means static data scientist showing a dashboard to a live

streaming deployment of the same dashboard, updating

in real time is roughly 10 times the effort.

 00:48:38 So, I'm not saying it's necessarily 10 times the same

ingenuity needed, it's just 10 times the effort at 10 times

for timeline. Likewise. So, it's a question of cost. It's a

question of some R&D risk involved, some risk that that

things will go wrong or will not be moving fast enough

and afterwards there's a question of maintaining this and

making sure the system is going. So, at this point, the

system, if it's a streaming system, it has essentially hired

somebody on the MLOp side on the data and

engineering/reliability side to make sure that the pipeline

is being properly maintained. So, it's a challenge to a

degree, but many systems never end up going from batch

to streaming or from prototype to production with

realtime data. Because this challenge is just too much to

overcome. And depending on the, depending on the

setting, it's sometimes maybe the case that the project

actually brings 10 times more value if put into place in

real-time or even more. But it just never happens because

the cost side is too prohibitive, or the time management is

too prohibitive. And the approach, what we're taking is

basically to automate the second step, make it possible

too.

Jon Krohn: 00:49:57 So, streaming can historically be 10 times as complicated

but it can offer more than 10 times the value once it's

implemented in production. And real-time reactive data

processing frameworks like Pathway are designed to

dramatically decrease that 10 times complexity in getting

it set up and allowing you to realize that 10 times value,

Adrian Kosowski: 00:50:22 Well put Jon. The cost aspect is actually quite fascinating

because as we do this transition from batch systems to

work more and more with steaming data there are a lot of

dimensions on the cost side, which come in with a

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
23

steaming system, which are not obvious. So, one aspect is

that the structure of expenses related to infrastructure,

cloud infrastructure changes. Traditionally streaming

systems had a higher hot storage component requiring a

lot of state to be maintained in hot storage. And this is

only changing now. This is a cost factor which has been

reduced, and this is the counterpart is actually that batch

systems have an enormous computational cost associated

with them because you are doing a lot of essentially

useless computation every 24 hours. You're recomputing,

recomputing, recomputing, the same things, even though

maybe in the horizon of one day, 1% of your input later

changed, you're doing a 100% recomputation,

Jon Krohn: 00:51:40 Right.

Adrian Kosowski: 00:51:40 So, in the case of, you know, of actors, when you, when

you look at your cloud bill and you take the free

components, which is storage data processing, and

networks communication, let's say if a data processing

clusters, your, your spark clusters or whatever else you're

using to, to churn the data, are generating a significant

part of a bill. It may be the case that moving to

streaming-like systems or reactive systems which allow

you to transition through from micro batching into this,

this online world will actually cut the bill of a-

Jon Krohn: 00:52:18 [crosstalk 00:51:18] Cool. Yeah, that's really interesting

because to me it seems inherently that if you have this

continuous learning, oh, of course that's gonna be more

expensive because it's always running all the time. But I

hadn't thought about it from this perspective that with

batches, you're retraining the entire model every time.

Yeah, and so that is very computational expensive. Very

cool. Hadn't thought about that.

Adrian Kosowski: 00:52:41 There are many like practical aspects to it. And one is

just, you know it's, it's for reality around us for ad hoc

instances are often much more expensive than instances

[inaudible 00:52:53]. So, the rule of thumb is that if your

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
24

computation is running for four hours, five hours, six

hours during a day, during 24 hours, it already makes

sense to have an instance just reserved for this like 24/7

without asking for a new instance every time. And if

you're in this space by making this like batch

computation spread out over time, you are already better

allocating new resources because you get something like

a factor 4, 5 in computational resources for free just by

having more hours in the day to use. And, there are a lot

of possible gains which just come from this better like

spreading of computation over time.

Jon Krohn: 00:53:40 Very cool and crystal clear. So, to allow these reactive

data processing operations to happen efficiently over this

24-hour data as opposed to doing it in batches at

Pathway, you talk about transformers, and so these aren't

to be confused with transformer architectures that have

become really common in large language models like GPT-

4 and going all the way back to the early transformer

architectures like BERT, it's a different kind of

transformer. So, it's kind of like maybe how the word

Kernel is used in computer science. It means so many

different things, and so transformer here means

something different. Although from our chat prior to

beginning recording, it sounds like there is a kind of a

common thread to the etymology of why a transformer

architecture is called that and why your reactive data

processing operations are called transformers. Do you

want to fill us in on these transformers?

Adrian Kosowski: 00:54:38 Yeah, I guess this is a great question actually. And just to

say that the name transformer is kind of controversial in

the sense that obviously transformers of a T in GPT and

basically one of the more commonly used words on the as

an architecture in deep learning and kind of backstory

from our perspective is that one of our fans in Business

Angels is a co-author of the original Transformers paper.

So, [inaudible 00:55:13] attention is all you need. And our

CTO also comes from the attention/transformers world.

So, it took a lot of internal discussion if we wanted to use

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
25

the word transformers in a pure data processing sense

just there's not much depth to it. A transformer is

something that transforms one kind of data into another

kind of data. In our case, it's a box which transforms

tables into other tables. We are not the first to coin this

term, and I think it's one of them, like on the data

engineering side, it's pretty unambiguous and I think for

the season we-

Jon Krohn: 00:55:57 Oh, really? So, in data engineering, this use of

transformers as an operation that transforms one kind of

data structure into some other format that's, it's quite

common?

Adrian Kosowski: 00:56:12 It's used by some other frameworks. I'd say as like, we

didn't want to coin new terminology for it. There's actually

an interesting point which also helps to take the path

between data engineering and data science is that in data

engineering, a lot of the time you think of your data

tables, data sources as assets meaning that there, there's

certain, like they have a physical representation

somewhere in the data warehouse, and when you

combine them, you create a new physical representation.

And to do it, you need to run a job. If you are in batch

mode or something like this, it's, there's a very physical

feeling to data flows, whereas in the data science world

more often than not you are designing a kind of block, a

building block, which just it's like a function which takes

certain input parameters and has certain output

parameters, which is much more flexible to use.

 00:57:16 It's not tied to specific inputs, it's more composable. It

can be used inside other functions. In our case in the

case of Pathway, we have support for iterations. So, for

example, iterate a given transformation until convergence.

So, you can have a transformer, which is like one

iteration of let's say gradient descent, and you put it into

a block which says iterate until convergence, and then

you get a new transformer, which is like for, for looped

version of the first one. And, and in this sense, something

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
26

that, that has these like data table interfaces in and out

that's pluggable and, and moldable in the, in the data

flow is how we use the term transformer.

Jon Krohn: 00:57:59 So, cool. So, now I understand what transformers are in

the context of data engineering and if transforming some

data format into another data format as part of this data

flow. So, why is that so critical as a part of streaming and

reactive data processing?

Adrian Kosowski: 00:58:17 So, the kind of place which is crucial here is actually

being able to express logic easily, clearly, and in a way

which is accessible. And we are always somewhere on the

boundary between declarative and imperative

populations. So, if you say you want to filter a table

leaving only values in which a given column is larger than

10, you're defining a kind of block which says, let the

data in. And you get one table at input and output table

with the same schema, but with fewer lows. So, it's as if

you were wiring together blocks and the connections

between these blocks you can, you can feel a bit as if you

were fiddling with, I don't know, with circuits or whatever.

You're just pinning them together and you get the kind of

data flow.

 00:59:20 And this is like the outmost perspective. And somehow

when you look inside each of these blocks, so when you're

running a filter, which just leaves values with the larger

than 10 you're probably doing a built-in, which is, which

is like a filter, select something like this. But you could be

doing something a little more advanced, which is like

applying a lambda function to every row of your table in

the MapReduce paradigm. So, you could be doing

something more powerful. And then you could also be

doing some transformations which are specific to multiple

rows of the table. So, this comes in a lot when the data is

interconnected. For example, when your data tables

represent a graph, a network, and the connections

between nodes expressed by edges, which are pointers to

other nodes, and you want to perform some kind of local

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
27

operations, for example do a search of a given

neighborhood of a graph, and there you can switch to a,

it's more convenient to switch to a programming

paradigm where your main actor is not the table, but it's

really the data row, the data element, the data node that

you're working with.

 01:00:39 And you act around it somehow. So, you are, you're not

working with tables, you are, you are working with, with

individual roles and this is what's happening inside for

transformers. So, if you peek inside, you have this

possibility to work with individual data elements, it's a bit

like it, it's a bit like to some extent, if you define a kernel

when you, you mentioned the word kernel. So, kernel is

very, very much about designing a transformation, which

is around individual wires. And the whole thing the whole

deployment has to perform has to run for multiple kernels

in panels. So, it's the counterpart of this in the world of

incremental reactive process.

Jon Krohn: 01:01:24 Cool. And there are instances in the context, certainly of

reactive data processing where these transformer

operations are themselves, machine learning powered.

Right. And I think you've referred to those as smart

replacements.

Adrian Kosowski: 01:01:38 Absolutely. Yeah, that's the objective, and from being a

product person, I'm very much like on the developer

experience front. This is one of my hopes here is to

provide a seamless experience transitioning from what

you could call relatively mundane data operation which is

defined in SQL to one, which is in some sense smart or

fuzzy or machine learning powered. To give you an

example, if you take the group by operation, which

groups row of the table according to a value of a given

column. So, standard group by. This returns a certain

number of groups of rows, if you take a clustering

operation on the table, clustering understood in a

machine learning sense, clustering also performs a

grouping of data points, right? So, from an interface

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
28

perspective, if you use a table or data frame API to

express the operation group by, as you see it in SQL or

Pandas and clustering with arbitrary custom logic have

the same API.

 01:02:57 So, in some sense, for us, it's just an interchangeable

box. If somebody is, for example, grouping, let's say

points in space by the x and y coordinates, they put a

group by type of box, but then they change group by to

spatial clustering. And then the internals pass from an

SQL like database operation to a machine learning

operation, which performs a clustering of points in space.

So, this is like one example for group by versus cluster.

Another is about, for example, join versus smarter fuzzy

join if you're joining two tables by name, okay, versus

pure join operation. If you are joining, but there maybe

typos in your names or some other inaccuracy, so, you're

not sure which column you're joining with which column,

then you're getting into some kind of fuzzy filtering. And

the API again, stays the same, but for implementation is

completely different. And we switch, like we make the

transition from the data engineering to the data science

side.

Jon Krohn: 01:04:05 Crystal clear, thank you for those examples. They make it

very easy to understand how transformers can be

machine learning powered and be these smart

replacements in a reactive data processing framework.

And you mentioned in your response there, how you are a

product person. I think this is interesting. So, we

mentioned right at the onset that you're the chief product

officer at Pathway, but if I dare say your background

strikes me as the kind of background that somebody

would usually have as a CTO as a Chief Technical Officer.

So, you have this very technical computer science

background. I know you're still hands-on today writing

code, and you're in this CPO role. And, so I think you

might have given us a bit of a clue to the answer as to

why it makes so much sense that you're the CPO and it's

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
29

because the Pathway product is designed for highly

technical people. It's designed-

Adrian Kosowski: 01:04:56 Absolutely, absolutely. I think, the main all goal of a

products person is to understand the end user and to be

like the end-user. It makes things simpler, but at least to

understand the needs of the end-user and to be able to

have a certain empathy for these needs. This is why I

guess for a technical person, it's easier to be a CPO of a

developer product. I would say if it were not a developer

product, I'd be completely disqualified. Just not kidding. I

mean, it's like it's too tempting to switch size and be part

of a creative process and say, I mean what if we could add

to our data processing engine something else that, you

know, when starts doing, doing a tech push and so on.

 01:05:50 Yeah. I agree fully this temptation exists and it's kind of a

bit of a complication, always knowing how the internals

work. However, being technical also means that I can

actually test the product in action. I can add five lines of

code in Pathway. I can see it. I can see if I'm able to

showcase the things that we are promising ourselves, I

can review some showcases or pieces of open-source run

by others using Pathway to see if it's all meeting the

expectations that are made of it. Especially given that the

state of data processing frameworks as it is, is such that

the developer experience and the experience of

maintaining them, scaling them is one of the bigger

issues. Cause things just are either a follow apart or don't

work 100% of the time. So, when the experience of

actually interspecting debugging is not optimal. And this

is one of the bigger pains of data teams, and having trying

to experiment with how we can resolve these issues and

work on the experience front is a major challenge and

major, I think, opportunity also for this space to provide

some improvements here.

Jon Krohn: 01:07:12 Nice. That makes a lot of sense. And yeah, I can, it's

crystal clear to me now. When I was preparing for this

episode, I was like, oh, this is kind of interesting. And

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
30

then it started to become really obvious. Okay, he is the

perfect product person because he is the ideal user of this

product as well. So, speaking of your technical

background before Pathway, you were a computer science

researcher for over 15 years, including at a renowned

French institute called INRIA in French, and it translates

into English as the French Institute for Research and

Computer Science and Automation. And when you were

that researcher for all those years, you published dozens

of peer-reviewed papers, you specialized in things like

network science, distributed algorithms, dynamical

systems, and the transport optimization that Pathway

specialized in initially. So, do you have like a particular

area from that time, from your research time that was,

that you were really passionate about, maybe you're still

really passionate about today? It seems like complex

systems, for example, were a recurring theme for you.

Adrian Kosowski: 01:08:21 Definitely. Definitely. If you zoom out, you know, and look

at a large system where things are moving, it can be in

nature with ants cooperating in the task, it can be a

transportation system. Then you look at how it's built,

how it works, how the local interactions drive a system,

and it's fascinating to observe this from also a

computational perspective and ask why it's working like

this. So, why is the why is it working and what does it

achieve in this way? And can we learn from it? Can we

learn things about it? Can we learn certain approaches?

Can we try to transfer them into computational

paradigms or vice versa? Can we use computational

paradigms to explain complex systems? I think one of the

recurring themes which exist in complex systems is

visibility of distributed control and coordination, which is

fascinating.

 01:09:23 Another, which is probably closer to the, let's say for big

challenges of both machine learning and computer

science for the next decade is one of low energy

computing or energy optimization. If you look at

distributed systems, they actually, for the fact that they

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
31

are so distributed, they do things locally, they learn

things, they improve things with relatively little

interaction, little communication, little computation, and

little cost. And for an ant, it's obvious that it cannot, you

know, use up more energy than it has because it has to

eat to get this energy. So, it's kind of optimizing as well

for the computation effort. It cannot have a bigger brain

because that would eat up its sugar. So, there are things

that [inaudible 01:10:19] in nature that are driven by

energy. In world, let's say computing world, especially in

for deep learning world, versus something that's kind of

acknowledged that we are not optimizing for energy and

in, and that a lot of these computations are done in a way

which well just gets things done with by scaling resources

up scaling cost up.

 01:10:50 But, since it's so important, we don't think about the, the

energy impact and for actually the incremental way of

computation and also streaming computations are more

energy efficient. So, it's somehow more natural for me to

be in this space, which cares about the amount of data

updates that are happening in these systems, and doesn't

just recompute everything from the beginning,

Jon Krohn: 01:11:18 Right? The ant brains in a streaming processing system

don't need to be as big because they're just online making

decisions, one little piece of food at a time.

Adrian Kosowski: 01:11:33 Fascinating, it's, quite fascinating with ant brains for the

more external storage an ant can rely on, like leaving

pheromones the less it needs to store in its head if it

cannot rely on external storage like, because it's too hot

in, let's say [inaudible 01:11:52] desert, then it has to do

more computations, and they do rely more on internal

storage and [inaudible 01:11:58]. So, these surprising

tradeoffs between like communication storage and

computation happen in nature, and they're very like

neatly captured by a lot of those models. So, so it's kind

of.

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
32

Jon Krohn: 01:12:13 That's so cool.

Adrian Kosowski: 01:12:14 So, yeah, I guess there are many challenges that nature

and that complex systems are remarkably good at, but we

haven't quite grasped. One of them is the ability to forget.

This is one of the things that many natural systems have,

which is naturally forget things they've learned or they

unlearn things. This is something that's not super easy

with deep learning models. So, it is more the, again, the

area where lightweight models or models which have

some kind of ability to add, delete data points that they,

that have an edge in this area somehow.

Jon Krohn: 01:13:01 Rich, rich opportunity for more research there, for sure.

And so, you made this leap from all these years of

research into being a startup founder. How did you make

that leap? And is there anything that you missed from

being a researcher? It sounds like you still get to do a lot

of fascinating research in the role that you're in.

Adrian Kosowski: 01:13:19 Definitely. I get to miss the frustrating part of being a

researcher. So, like one thing that I've discovered is that

it's actually gives more, more joy to deliver code or all like

small showcases around code, which is open-sourced

then to focus on the full effort of writing papers. Maybe

GPT-4 will change that and actually, for paper writing

part will be taken care of. We just have to focus on

delivering the essence for now. But there are many

exciting, exciting challenges in which we are doing now,

that's true. I should say I'm not completely new to the

enterprise/startup world. Given that something like

almost 20 years back, I started a programming

community called Spoj.com, Spoj com which would be in

its day one of the largest competitive programming

communities.

 01:14:22 It was, we really did it for the excitement of actually

getting people to use, to learn competitive programming,

to boost their skills. But we also needed the lifeline for it.

And interestingly enough, the lifeline, the revenue

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
33

channel there was through enterprise who were interested

in putting into place a similar framework for their

enterprise staining programs in what was known as

algorithms at the time. And then started being called a

data science but with a, with a gentle migration around

2010. But this was also an interesting experience for me,

like drafting my first contacts and doing my first sales,

and at the same time, having this enormous opportunity,

which was to drive a community, be part of a community,

take feedback from a community, and to learn the things

that I sort of need to make for product better.

Jon Krohn: 01:15:20 Nice. Very cool. I, yeah, I actually, I was hoping to speak

about Spoj.com so I'm glad that you managed to tie it in

there. And so, given that you are still hands-on today, so

despite being in this CPO role you know, very senior role

in a fast-growing startup, you still manage to make time

to be hands-on day-to-day. I'd love to hear what your

weakest, kind of, like, what kinds of roles, what kinds of

hats you have to wear over the course of the week when

you're, you know, there's product design aspects, there's

programming aspects, you end up, you make podcast

appearances, conference presentations, that kind of

thing.

Adrian Kosowski: 01:16:05 Yeah, there's multiple hats versus the hat of the product

person. And that is already many shades of one hat,

because the product person is all about collecting input

about features, which comes from outside that could be

from outside, meaning from users who are happy,

unhappy, or expect some prioritization or just have some

comments. Comments from clients who, which come in

through, through sales channels and so on. And

somehow aligning these needs with what is actually

feasible and what is proposed by the CTO, by the

development team with a longer term roadmap, which is

kind of originates from us and from what we would see in

the system. So, somehow being able to make an informed

prioritization decision about the different features,

elements, aspects that come in is part of my role.

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
34

 01:17:05 It's an interesting place to be because when part of your

product is essentially a framework which has an API,

your features are like code in a way, and then this means

it's actually way, way closer to code. Another hat is about

actually being able to work with the community, the

users who are excited about the product, and to be able

to either help them or at least understand better where

they're excited and see if we can make the product meet

expectations. So, this is very much that both making

reach outs which are maybe not too overwhelming just to

say basically, "Hey, we are there, if there's anything we

could do better. We understand that the framework is

relatively new still, so it's robust, but you don't have

10,000 answers on stack overflow to, to guide you, but we

are here for you. We are here on Discord, you know, you

can exchange with us freely and like, get answers

probably sooner. And actually also have like 10 excited

members of our development team who are able to help

guide and potentially come up with new ideas together."

So, this is, this is pretty exciting as well to be part of

animation of this. One thing which I've done for Pathway

and which I know some organizations, we are not the first

to do it, so I know some organizations have done it. One

organization that has done it is GitHub. We've pushed a

lot of the workflow into a combination of GitHub with pool

requests with content creation, for example, through

markdown.

 01:18:54 And if you imagine that you have a monorepo base, which

includes your code, your website documentation, and

your content pieces, this means that no barriers in the

workflow between team members who are more on the

marketing side, content marketing side, or on the side of

actual creation. Anybody can contribute on a fair basis

using the tooling. There is a certain onboarding effort,

which is perhaps higher than just with platforms that are

not meant for developers. So, you have to devote two

hours at the minimum to onboard every new team

member, but once the process is flowing, anybody can

contribute, and it's kind of transparent whether you're

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
35

contributing to the code base, to the documentation, to

the content around it. So this, it's much more natural

that the key developer will say, "Hey, we are not

explaining this site on our website, let me fix it".

 01:19:56 And likewise, somebody is not just writing an article or a

content piece about it, they're delivering a full executable

piece of code, which can be compiled by during a ci cd

process into something that goes live as an article on our

website, and also tested in the process, whether the latest

version of a framework doesn't, like is it's not broken, or

that there's no issue with things executing properly, so,

that we can be absolutely sure that our content meets

developer standards and we deliver quality.

Jon Krohn: 01:20:32 Yeah, a lot of different hats that you have to wear, of

course.

Adrian Kosowski: 01:20:35 Yeah. I try to reduce this one. It's something that you can

pull off probably only in developer-product oriented team,

but one that I highly recommend, if you happen to be

doing one just make markdown the language in which

people talk to each other, technical and non-technical,

you can do basically everything there from like websites

in some sense, code as well, or code that generates

markdown. And so drawings, anything was possible. So,

so you start feeling like one big Wikipedia and one web

with knowledge and everybody's kind of interconnected.

Jon Krohn: 01:21:13 Cool. Yeah, it sounds like a great way to work. And I have

some kind of experience with that in a smaller scale,

where the first book that I wrote, Deep Learning

Illustrated, it's in LaTeX, so not markdown, but we did

everything in GitHub. So, I had Grant Beyleveld, who

works on my data science team at my machine learning

company, Nebula. He was a co-author on that book, and

we were able to push updates and be able to very easily

comment and be able to track changes through that kind

of system. And I thought it was really intuitive and

straightforward, and gave a great record of how things are

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
36

changing in the system. So, what kinds of, other than this

GitHub trick that you're suggesting for teams to work

with, what kinds of tools do you use daily? Like, what's

your programming stack like, personally?

Adrian Kosowski: 01:22:06 So, I'm, you know, I'm, I try to be hands on, but I'm

already like in between the two worlds. I don't have a

super advanced stack just to say, I use one laptop screen,

so this says something about me. If I'm working on one

screen, it means I'm like a developer, but not, I wouldn't

be able to aspire to certain circles.But for one of the

things we have in our setup, it's a remote setup, which

means that the develop machine develop everything is set

up for, for remote development. So, everything is working

on the same developer machine that's shared in the team,

which means that I'm using the same setup as everybody,

which is a stack meant to be productive. We do have

some preferences in terms of IDs, I'm usually a VS Code

person myself, like most of the team.

 01:23:04 But this is just for, this is just the front and the rest of it

is what comes through with our tech setup as, as defined

by our CTO. So, I get to benefit from this, and actually

having a remote work setup is something that comes

through and having all of the team on board with it

including for example, the persons who are doing sales

demos to be able to, to have this workflow in which you

can provide a demonstration on a remote machine that

everybody has access to in a specific place, it kind of

makes it much smoother to have a the workflow going all

across the team.

Jon Krohn: 01:23:46 Nice. And so that tech stack that your CTO defines, what

is, what are the, what's the core programming language,

for example, a Pathway?

Adrian Kosowski: 01:23:54 So, Pathway is a Python front to Rust engine. We are

neatly between the two. In general, a user of Pathway

stays on the Python side, has the ability to use SQL, but

which is compiled to Python. And then Python is meant

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
37

as the language for expressing most of the logic. It largely,

how do you say it compiles out the equation in the sense

that the Python code disappears, disappears, disappears.

Sometimes some function calls survive, but to the extent

possible the Python operations are replaced either by

[inaudible 01:24:32] or by Nuba, depending on the case.

So, it gets low level and GIL lock, like lock [inaudible

01:24:40] and so on. So, there are no, there are no

bottleneck there. And the, the computation is taking care

of on the Rust side.

 01:24:47 So, the team is largely either on the Python side or the

Rust side. We do have an enterprise offering, which also

includes dashboarding layer to be able to present nicely

interconnected dashboards which allow for dataset

exploration on top of what's made available by Pathways.

So, Pathway does for data enrichment, puts forward

tables of data that are ready for business intelligence for

business analysts to work with. And we demonstrate this

through a SQL layer with several hundred dashboards

depending on the data model and logistics. It's several

hundred that we can propose to clients or to even data

engineers, data teams on the client's site to customize for

their own needs or that we can customize. So, there's a

certain SQL layer to it as well.

Jon Krohn: 01:25:48 So, the Python makes perfect sense to me as the, what

you describe as the front-end to your product, because if

this is designed primarily for data scientists, machine

learning engineers to be using Python is the lingua franca

of data science and machine learning. So, it makes

perfect sense. When you were deciding to work with Rust

behind the scenes, so it's a functional programming

language, it's one of the most popular functional

programming languages today. But how did you make

that particular decision that this would be the right

language in the back-end?

Adrian Kosowski: 01:26:18 I would say that the decision took itself because at the

same time, several people with similar mindsets, some of

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
38

them on our team, some of them are also involved in

open-source projects decided to make Rust the language

of choice to it has a certain number of advantages also

from our perspective in terms of of the quality we can

deliver, we can be sure to deliver. But just, just to say

that let's say theR rust ecosystem has gone to a degree

where it's actually just as easy, if not easier, to find a

data stack with a Python front-end, which has a Rust

backend or Rust data representation. So, Polars, for

example, as a Pandas replacement, this means that we

are not, we are not losing anything by having to interface

just a bit more to the C part of the world.

 01:27:40 It's still possible. It's just not a big deal for us to have a

slightly more complicated glue to see C libraries. It's not

that it would be a major argument in the discussion, and

other than that, if we have folks who are on board who

are willing and happy to use Rust and deliver better

quality in Rust, it's a big gain. There are some anecdotal

places where last safe typing is causing us some extra

work, but at the end of the day, everybody's happy with it

as well, so-

Jon Krohn: 01:28:19 Got it. Nice. And so we know from this episode, and also

from your previous appearance on the show back in

episode number 632, that you're a brilliant person. You

can go really deep into the technical weeds on a wide

variety of topics up and down the technical stack from the

low-end code, all the way to having a product work well

for a user. So, I think a really interesting question for you

is if there is some kind of approach that's up and coming,

it could be maybe if it happens to be data science, that'd

be ideal, but some kind of approach or technique or tool

that you think is emerging that our audience should

know about and be excited about in the years to come.

Adrian Kosowski: 01:29:12 This is actually a big question, and now you've made me

feel like that I have to take care of a prediction, I like,

because like 10 years now-

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
39

Jon Krohn: 01:29:27 Well, yeah [crosstalk 01:29:25] It could be something, just

something that's happening now, that our audience

should know about, that maybe they wouldn't hear about

elsewhere.

Adrian Kosowski: 01:29:36 I think one of the things that I should say as a product

person is that productivity is important. And the kind of

drive around productivity that's been the Silicon Valley

DNA, essentially, it's like everybody reorienting towards

productivity is here to stay. And this is something that we

see as well also with the let's say for B2C applications of

artificial intelligence, they're very much oriented towards

increasing the productivity of people. So, it's actually like

B2C or B2B from the sense, from the point of view of of

being a productivity tool at work or a productivity tool in

our personal lives. And this is still there. And I would

personally also want see the aspects of growth of learning

methods that kind of counterbalance this with for

example, energy efficiency of the ability to do low energy

computing and to take into account certain other of

machine learning models beyond let's say what, what

LLMs are capable of delivering.

 01:31:22 So, I think I'm one of those who will be pushing for the

so-called niche in the sense of the number of applications

that you see, but one which has an enormous value tied

to it from the point of view of both data processing and

enterprise, and behind the delivering value behind the

scenes, and helping guide people, organizations towards

more informed decisions, towards better insight. So, it's

more of the data insight part of the world. That's kind of, I

don't know if this makes sense.

Jon Krohn: 01:32:05 Right, right. So, so your, I think your main point is that

there's a lot of focus on productivity. So things of course,

like ChatGPT, this is seen as a productivity tool and you

made the joke that made this makes it easier to write

papers as an academic. But what you're saying is that

there's still a big gap in being able to get insights

automatically from data.

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
40

Adrian Kosowski: 01:32:26 I'd say this is for case, and I'd say we are missing

something. We are missing some blocks. We are missing

some bricks to be able to bridge the two worlds. For the

next five years, I'd say that the type of insights that we'll

be getting will still be based on pre-deep learning era

models, predominantly that is the ability to put these

models, which into place in the right way to deploy them,

to make them work in an, from an operations perspective,

MLOps, [inaudible 01:33:05], that's the big effort. And

once we've bridged that effort we will be left with this this

question whether we can get, you know, human level

insight out of a system that's performing too much data

analysis for human to actually to churn through. So, here

we are still very much in the range of decision support

tools on the enterprise side. We have not made this

transition from decision support to like something further

than this. And I think there's, it's because the ingredient's

missing. It's not just with nobody's tying, it's, it's

something's missing.

Jon Krohn: 01:33:52 Nice. Cool. I love that insight into the missing insights in

automation. All right, so Adrian, I've already taken way

more time than I promised you I would. So, thank you

very much for being generous with your time today and

sharing so many of your insights with us. At the end of

every episode, I ask for a book recommendation. Do you

have one for us?

Adrian Kosowski: 01:34:17 Book recommendation. Wow. For book recommendation, I

yeah off the top of my head actually, if you mentioned

Rust and we were started talking about like learning

Rust. If you want to learn Rust, then Rust Documentation

is kind of like a book. And I think it's actually an amazing

experience. So, this is just something just to say

spontaneously that the Rust book is where, it's where

you, the difference between a documentation and a book

has blurred itself. That's, that's one of the reasons why I

like this. But in terms of like looking at my mini bookshelf

in this office, I'm as you said, I'm a complex networks

person. So, anything related to complex networks always

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
41

is a good good thing to read. Complex networks are

everywhere from real world systems, social networks, our

brains, everything here as a complex network. I'd say for

An Introduction by Newman, or Newman and co-authors

is always a good thing to do if you haven't read it. And

some of the more recent works out. Jon, I think you may

have actually a better overview here.

Jon Krohn: 01:35:40 Yeah, I don't know if I have a better suggestion on

complex networks books but yeah, I don't really know

that space at all though. Sounds fascinating. I do want to

be thinking about the world more in terms of ant brains,

so that sounds like one I should be picking up.

Adrian Kosowski: 01:35:56 One, one thing I, I'd say is actually when you take any

networks book, complex networks, so whatever, they have

these pretty covers, you know, there's always this-

Jon Krohn: 01:36:03 Network diagram.

Adrian Kosowski: 01:36:03 Yeah. If you have one of both, it usually makes for a good

read. It explains like anything-

Jon Krohn: 01:36:12 You can judge a networks book by its cover is what you're

saying. Awesome. And so Adrian, how do people follow

you after this episode? If they want to glean more brilliant

insights from you after the episode, where's the best place

to track what you're up to?

Adrian Kosowski: 01:36:29 So, I'm, I have no, like, ambition, aspiration to be like an

influencer. I'm happy to chat exchange with anyone.

You'll find me regularly on our Pathway Discord, so as

discord.gg/Pathway, of Pathway. I'm there. I mean, I'm

happy to exchange with anyone from the community who

has like an interest in any topics which are broadly

related to reactive data processing and so on or to

network science topics and how they've been treated. You

can find me on LinkedIn. You can find me on Twitter, at

last.

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
42

Jon Krohn: 01:37:09 Nice. All right, sounds great Adrian. Yeah, so that's a very

nice offer for listeners. You can reach out to Adrian on the

Pathway discord and it sounds like at this time he has

bandwidth for individual questions, pick his brain.

Hopefully that's still the case when this episode is

published. And yeah, so thank you so much Adrian for

making that offer as well as the hoodie offer going all the

way back to the beginning of this episode. And thank you

for being so generous with your time as well. And yeah,

we'll have to check in with you on your journey and the

Pathway journey again in the future.

Adrian Kosowski: 01:37:46 My pleasure entirely, Jon, thanks for having me and hope

to see you at a conference sometime soon.

Jon Krohn: 01:37:51 For sure. That was an incredible episode with a brilliant

guest. I hope you enjoyed our conversation as much as I

did. In today's episode, Adrian filled us in on how batch

processing is associated with training machine learning

models at discreet intervals. This could be daily or

monthly or whatever, while streaming processing allows

for computationally and cost-efficient real-time ML model

training. He talked about how reactive data processing

allows an application to react to data it hasn't

encountered before handling it seamlessly and potentially

saving firms vast sums such as in financial fraud

detection situations or with complex evolving systems

such as the global supply chain network. He talked about

how the transformer operations that transform data

during data flows can be dynamic or fuzzy when they're

powered by machine learning. He talked about how

Pathway elected to go with a Python platform interface to

be easily usable by machine learning practitioners while

they chose Rust for high performance behind the scenes.

 01:38:52 And he talked about the big commercial opportunity of

filling in the missing bricks for extracting useful insights

automatically from data. As always, you can get all the

show notes, including the transcript for this episode, the

video recording, any materials mentioned on the show,

http://www.superdatascience.com/669

Show Notes: http://www.superdatascience.com/669
43

the URLs for Adrian's social media profiles, as well as my

own social media profiles at superdatascience.com/669.

That's superdatascience.com/669. I encourage you to let

me know your thoughts on this episode directly by

tagging me in public posts or comments on LinkedIn,

Twitter, or YouTube. Your feedback is invaluable for

helping us shape future episodes of the show. And if

you'd like to engage with me in person as opposed to just

through social media, I'd love to meet you in real life at

the upcoming Open Data Science Conference East, ODSC

East, which will be in Boston from May 9th to 11th. I'll be

doing two half-day tutorials. The first one will introduce

Deep Learning with hands-on demos and PyTorch and

TensorFlow. And the other tutorial which is brand new,

will be on fine-tuning, deploying, and commercializing

with large language models, including models like GPT-4.

In addition to these formal events, I'll also just be hanging

around and grabbing beers and chatting with folks. It'd

be so fun to see you there.

 01:40:04 All right. Thanks to my colleagues at Nebula for

supporting me while I create content like this

SuperDataScience episode for you. And thanks of course

to Ivana, Mario, Natalie, Serg, Sylvia, Zara, and Kirill on

the SuperDataScience team for producing another mind-

blowing episode for us today. For enabling that super

team to create this free podcast for you, we are deeply

grateful to our sponsors whom I've hand selected as

partners because I expect their products to be genuinely

of interest to you. Please consider supporting this free

show by checking out our sponsors links, which you can

find in the show notes. And if you yourself are interested

in sponsoring an episode, you can get the details on how

by making your way to jonkrohn.com/podcast. And

thanks of course to you for listening. It's because you

listen that I'm here. Until next time, my friend, keep on

rocking it out there and I'm looking forward to enjoying

another round of the SuperDataScience podcast with you

very soon.

http://www.superdatascience.com/669

	SDS PODCAST
	EPISODE 669:
	STREAMING, REACTIVE,
	REAL-TIME MACHINE LEARNING

