

Show Notes: http://www.superdatascience.com/765
1

SDS PODCAST

EPISODE 765:

NUMPY, SCIPY AND

THE ECONOMICS OF

OPEN-SOURCE,

WITH

DR. TRAVIS

OLIPHANT

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
2

Jon Krohn: 00:00:00 This is episode number 765 with Dr. Travis Oliphant, the

creator of NumPy and SciPy. Today's episode is brought to

you by the DataConnect Conference, by Data Universe,

the out-of-this-world data conference, and by CloudWolf,

the Cloud Skills platform.

 00:00:22 Welcome to the Super Data Science Podcast, the most

listened-to podcast in the data science industry. Each

week we bring you inspiring people and ideas to help you

build a successful career in data science. I'm your host,

Jon Krohn. Thanks for joining me today, and now let's

make the complex simple.

 00:00:53 Welcome back to the Super Data Science Podcast. Today's

episode is with the absolutely iconic and absolutely

brilliant Travis Oliphant. Travis created the ubiquitous

NumPy and SciPy packages, which are downloaded over 8

million and 3 million times per day respectively for

numeric operations and scientific computing in Python.

He also founded Anaconda, the company behind the also

ubiquitous Python package manager. He founded the

massive PyData conferences in communities, as well as

its associated nonprofit foundation NumFocus. He

currently serves as the CEO of two firms, OpenTeams and

Quansight, and he holds a PhD in biomedical engineering

from the Mayo Clinic in Minnesota.

 00:01:33 Today's episode will be primarily of interest to hands-on

practitioners like data scientists, software developers, and

machine learning engineers. In this episode, Travis details

how his journey creating open-source software began,

and how NumPy and SciPy grew to become the most

popular foundational Python libraries for working with

data. He talks about how he identifies commercial

opportunities to support his vast open-source efforts and

communities, how AI, particularly generative AI, is

transforming open-source development, and where open-

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
3

source innovation is headed in the years to come. All

right, you're ready for this jaw-dropping episode? Let's go.

 00:02:12 Travis, welcome to the Super Data Science Podcast. I am

beside myself that you're here with us today. It's amazing.

Where are you calling in from today?

Travis Oliphant: 00:02:20 Jon, thanks. It's great to be here. I'm calling from Austin,

Texas. I've lived here for 16 years, almost 17 now.

Jon Krohn: 00:02:27 My first few times to Austin, Texas have all been post-

pandemic. I'm relatively new to Austin. I guess there's a

lot of that happening, there's a lot of people who

pandemic era ... But our company has an office in Austin.

And the hotel that we were staying in was right across the

street from a big Anaconda logo on a skyscraper.

Travis Oliphant: 00:02:48 Yes. I don't know if the Anaconda logo is still there, but it

was really fun when that got up. I pointed it to all my kids

and people that came in. There's a lot of virtual presence

that I have, you can see the impact virtually from the

stuff you've worked on. But there's something about the

city you're in having a logo that's visible to everybody.

Jon Krohn: 00:03:07 Yeah, that's cool.

Travis Oliphant: 00:03:07 It was pretty cool. I think in the pandemic. I think

Anaconda shut down that office space. I shut down office

spaces I was using pre-pandemic, so now I'm totally

virtual. We use occasional office spaces, basically

hoteling, but a lot much reduced, our office space, which

has its own ... That's a topic we could cover, but remote

work versus in-person work and some of the trade-offs is

very real.

Jon Krohn: 00:03:34 Yeah, yeah. Well, around 2021, that logo was still up

there at least.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
4

Travis Oliphant: 00:03:38 Awesome.

Jon Krohn: 00:03:39 Yeah. And then speaking of my work actually, that's kind

of how we connected. So Ed Donner, who is a co-founder

of my company, Nebula, our CTO and whom I've worked

with for 10 years, and something that I frequently say

when we do 360 annual reviews, something that I put in

them, is that I hope that I'll be working with Ed until I die

because he's just unbelievably intelligent, hardworking,

amazing at personal relationships and following through

on everything he says. And yeah, one of the smartest

people I've ever met. So amazing to be working with Ed,

so I really appreciate him connecting us. And so I guess

somehow his time at J.P. Morgan connected with you

there then.

Travis Oliphant: 00:04:21 Yes, no, I'm thrilled. I was thrilled to reconnect with Ed.

I've known him for 15 years. We first met while I was a

consultant at Enthought when I first came to Austin. I

was an academic before then and came to Enthought to

learn business. And came to Austin, worked at

Enthought. We went to J.P. Morgan and basically we're

helping them build out their use of Python in risk

systems, and met Ed there because he was basically

managing ... He's a young guy, or either he looks young,

he either is young or looks young, one of the two, maybe

both.

Jon Krohn: 00:04:53 Actually. It is wild how old he is. People never expect-

Travis Oliphant: 00:04:59 I could believe that, because I met him ... He was like the

boss of the boss of the boss who actually pulled us in,

and I was like, "Oh, this big meeting with the boss's boss

and boss," and he looks like he was 25.

Jon Krohn: 00:05:11 Yeah. And he still does, it's wild.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
5

Travis Oliphant: 00:05:13 He was super capable, super intelligent, definitely

visionary. That's how I got to know him first. And so I

knew him when he left J.P. Morgan and I had lots of

connections there, so I was really thrilled to hear from

him. And then I saw the LinkedIn post he did, which is

phenomenal, just about explaining how to use LLMs

effectively. It was actually one of the best documented

examples and experiments of how to do it. It was really

great. It really was great.

Jon Krohn: 00:05:42 Yes. So he's an unbelievable teacher, he's an unreal

explainer of technical concepts, and so I'll be sure to link

in the show notes to Ed's LLM posts. He did a really fun

project where ... And so he's left step-by-step instructions

and everything is open-source tooling, which obviously

you'll appreciate, Travis. And so it provides you with

everything you need to know to download your own text

message history off of your phone and create an LLM that

can mimic not only you, but Ed was able to ... Anybody

that he shared at least 100 messages with, the LLM was

able to effectively replicate those people.

Travis Oliphant: 00:06:23 That's wild. Yeah. Definitely that concept has people's

attention. Either to, could we create my mimic, who could

I fake out with a text message with me?

Jon Krohn: 00:06:36 Yeah, there's a funny ... I probably shouldn't be sharing

this on-air, but I don't think anyone would care. So

someone that Ed and I worked with for many years was a

guy named Gareth Moody. And so Ed simulated a

conversation with Gareth, and Gareth kept saying, "I'm

running late," the Gareth bot, and that is spot on. That is

...

Travis Oliphant: 00:07:02 Yeah, I'm probably guilty of that too. My wife would say,

"That's probably going to be your LLM." That's hilarious.

I'm actually thinking that may be helpful. Obviously

there's dark versions of all of this, but I'm more of an

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
6

optimist so any ... Yes, I know there are potential negative

things that can happen but I'm a big optimist because I

feel like, "Great, we'll just respond to those and make

them better." What we need to do is create a bunch of

really talented people, distribute the capability to as many

people as possible, and that way, yeah, there's a few bad

actors, but you overwhelm them with goodness [inaudible

00:07:37].

Jon Krohn: 00:07:36 Absolutely. And enough good people out there looking for

ways to offset, to red team.

Travis Oliphant: 00:07:42 Yes.

Jon Krohn: 00:07:42 And to be able to offset the relatively small percentage of

bad actors out there, for sure.

Travis Oliphant: 00:07:47 Exactly.

Jon Krohn: 00:07:48 So we are going to come back, in our second topic area

that we discussed, we're going to come back and talk

about bridging open-source with business, the kinds of

things like your collaboration with J.P. Morgan that we

just alluded to, and bringing them around to seeing the

huge value in open-source. But first, let's get into the

huge open-source achievements that you have in your

past. You are best known as the creator of not only

popular, but absolutely foundational Python libraries like

NumPy, SciPy, and Numba, the Anaconda distribution, as

we already alluded to with the logo on the skyscraper.

 00:08:26 And so the Anaconda distribution is probably, if not the

majority, the plurality of how most beginners, the

plurality of beginners, start their Python journey. It

makes it so easy to get all of the key packages that you

need, probably most of our listeners use Anaconda at

some point. And then whether they used Anaconda or

not, surely any of our listeners who program in Python,

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
7

which is probably most of them, have used NumPy and

they have used SciPy, for sure. Yeah, I guess there's so

many ways that we could jump off from here, but I don't

know if it would be awesome to hear how you got started

with this, how you ended up contributing these

absolutely foundational libraries, from the start.

Travis Oliphant: 00:09:11 Yeah. Well, I'll try to give a summary, a brief synopsis. I've

actually given talks about this in several venues, and

they're always just giving a slight window into the journey

because it's a big journey. I would say I started with a

need. I wanted Python to be useful for my work. I was a

scientist at the Mayo Clinic and I was doing five-

dimensional derivatives to try to do image processing on

medical imaging data, in particular ultrasound and MRI

data, and I was looking for tools to help me. I could code

in C reasonably, I used MATLAB a lot. But I was running

out of space, I needed to take more control. And I very,

very much did not like the fact that if I wrote in a

proprietary language that I was essentially giving

somebody a burden, if I said, "Here's my code," and I love

the scientific ethos of sharing progress. And if I shared

progress with somebody, I didn't like the fact that I was

actually telling them they had to have a license for some

... I was kind of giving them a bug, I was telling them ...

That was my problem.

 00:10:08 And so I was looking for something to be open-source. At

the time there was lots of things out there, but nothing

really very well-developed. Came across Python, said,

"Well, this is a pretty good language." Used it for a year.

I'd used Perl before that, but then I went back to the code

I wrote in Perl and I had no idea what I said. I was

completely lost. But Python I've had the opposite

experience. Used it '97 for the first time, and then '98 I

came back to it and said, "Wait, I understand what I did."

And so that kind of said, "Well, I should do more here."

And since then I've been basically trying to help make

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
8

Python better for scientists. And so I guess because, as a

scientist myself, I had a better sense of what scientists

would care about. And one of the things I noticed pretty

quickly is that Python was a very generic computer

programming language, so the benefit of Python is it's not

just a scientific programming language, like R, IDL, or

maybe MATLAB. As an open-source comparison, R is

probably the closest, where R has been used by a lot of

statisticians, but it didn't attract a lot of computer

scientists, whereas Python did.

 00:11:10 Python had a lot of system administration, computer

science work, but the gap between the computer

scientists and the scientist in Python is real, was real, is

still real. There's a real issue there, that essentially I've

been seeing that bridge for a long time and a few other

key pieces. In fact, that's a great place where anybody

who wants to really contribute to Python, who has a

science background, it's a great place to be a community

worker. Somebody on the ground, translating the needs

to the people, and there's a few examples of people that

have done that really well. I was one of the people that did

that to some degree, but I was always driven by my need.

So I started in 1998 essentially writing packages and

extension modules for Python. One of the great things

about Python is its syntax was accessible to non-

programmers, so it didn't force you to learn all this

arcane syntax to do anything. You could just write

functions, so relatively straightforward loops. You could

write classes, but you weren't forced to. They were

available to you, but they weren't in your face, like you

had to deal with them from the very beginning.

 00:12:13 And then you could extend it really easily, relatively

easily. I knew C so I could get at the root, and when I

looked under the covers, I realized, "Oh, Python itself, it's

self-extended." It's not like, "Okay, here's Python." Then

the extension language is this extra thing that's bolted on

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
9

the side. Like no, the list object, the dictionary object,

these are all extension modules essentially, and so I just

made one. There was existing already a numeric

extension, someone had created an array object. It was

Jim Hugunin. I've learned since, I know Jim, he hasn't

worked in the Python space for years, but he built this

incredible array module called Numeric. He was a grad

student at MIT at the time, and I was a grad student at

the Mayo Clinic when this is all happening, so I just

wanted to use it to write stuff. I was writing an MRI

simulator, so I was doing things to solve my problems. I

wanted to read data in DICOM format so I could process

it. So I wrote something called NumPy I/O, which was a

way to read data into an array object directly from a

DICOM format. It enabled other things besides that.

 00:13:15 I was doing an MRI simulator, and so I needed to solve

the bloch equations, which is an ordinary differential

equation solution, and so I needed an ordinary differential

equation solver, and I didn't have one. This was when I

found a bunch of FORTRAN libraries that already did

that, and I just bound them to Python, kind of wrote the

glue to make them work with Python. And just sharing

that on the net, which I did just, put it out there, I said,

"Here you go." Of course my sharing was pretty bad, I just

said, "Here's a tarball with code," and a website that

looked terrible that it was totally non-accessible to

anybody, but a few people did, used it, downloaded it. A

guy out of Estonia downloaded it, Pearu Peterson, and he

gave me a better makefile. I still remember the day, he

gave me a better makefile. But it was more complicated

and it did more, and so I was like, "Oh, that's pretty cool.

I got a contribution." And that kind of started to get me

hooked on just this community collaboration.

 00:14:10 I loved the mailing lists. The fact that I could ask

questions and people a lot smarter than me would say

things and I'd be like, "Oh, that's a really good idea. Oh,

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
10

that's cool, I can learn from that." And I kept just

engaging that way as a grad student, all through ... Then

1999 was the year I really dug in and said, "Huh, we need

more here." Basically that year I probably released six

libraries that year, all different libraries for integration,

for special functions, for just a bunch of stuff. Along that

year, Pearu looked at it and said, "Why are you doing this

manually? You're taking FORTRAN libraries and

manually creating extension modules. Here you go. I'm a

real computer scientist. I will write a tool to build that."

I'm a practical guy who's learned a lot of stuff, but my

initial reaction wasn't to build a tool, my reaction was to

get something so I could get my job done. Pearu built

something to help everybody solve the problem, so he

wrote F2PY. And that just read the source code of

FORTRAN, automatically built the extension module for

you.

 00:15:11 That interaction all happened in 1999, 2000, all while I

was finishing my PhD. So by the time I got my PhD, I was

knee-deep embedded in the Python community and had

lots of people who are using these libraries, and they were

really ... An Anaconda user today would like ... This is the

early days. You did not have Anaconda, you had to make

it yourself. In fact, I tell this story because it's so critical,

it's got me on the path to Anaconda. It was a guy named

Robert Kern, who was a high school student at the time,

and eventually a colleague at Enthought. He wrote not a

makefile, but a Windows distribution for SciPy. It was

called Multipack at the time. So I had a tarball out there.

If you're a Linux user, it was pretty easy to build, but if

you're a Windows user, you're like, "I don't even have a

compiler on my system. I can't use this." But he basically

built the tool and released a binary so people would just

download the executable. So he built an EXE file.

 00:16:03 And that service had been useful over the years, basically

from 2019 to 2012, when Anaconda got started, for a long

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
11

time. We had done something at Enthought too to make

distribution easier, we were charging them for it. But you

saw that need dramatically, and what I saw is an increase

in users. The minute people could actually install it on

Windows, 10x increase in usage, maybe. It was massive.

So I reluctantly became a build person for Windows. It

wasn't my favorite thing to do, but by 2001 I was tracking

down build problems on Windows so that SciPy, which

became the grouping of packages, we could release it. So

SciPy started in really 1999, 1998, but became in fruition

in 2001 as a partnership with a few other people, Eric

Jones, Pearu and others. Now it's grown.

 00:16:55 Now the success of SciPy, again, I've watched this

repeatedly, and so I have some ideas about how do

projects succeed. I've also watched them fail. So I've been

a part of other projects that didn't go very far, or they

failed ultimately. And so you'll learn as much from those

two as the ones that succeed, but you end up with a kind

of a, "Okay, here's a recipe for how do you know." And

then part of it is things you know it to do, and then some

of it's out of your control. Some of it you just have to

observe and see if it happens, and if it does, you can

continue. If it doesn't, you have to move on. But you've

got to get other people involved. The reason SciPy

succeeded was because it wasn't just, "Hey, I'm going to

do all this work." It's, "I'm going to do work and then go

engage with a bunch of people." Go to conferences, go find

other participants to involve, figure out ways to grow the

community. So that SciPy has succeeded today and has

succeeded for the past, gosh, since at least 2013

probably, because of these hundreds of other

participants, people who are making it work.

Jon Krohn: 00:17:51 2 days, 50+ presenters, unlimited opportunities to

connect with a global data audience. The annual

DataConnect Conference brings together industry leaders,

technical experts and entrepreneurs to discuss the latest

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
12

trends, technologies and innovations in data, analytics,

machine learning and AI, all while amplifying diverse

voices in the space. Join us in Columbus Ohio July 11th

and 12th to hear from incredible speakers like Carly

Taylor, Megan Leiu, Olivia Gambelin and more! Can't

make the trip to Ohio? Join us for the 2nd annual

DataConnect Conference West, hosted in Portland Oregon

on May 8th where you'll hear from AI experts from the

likes of Microsoft, Alteryx and Women Defining AI. Save

15% on your DataConnect Conference pass by registering

with the code superdatascience.

 00:18:41 This sounds quite similar to ... We had Gael Varoquaox

on the show-

Travis Oliphant: 00:18:46 Yes, yes.

Jon Krohn: 00:18:47 ... in episode number 737, talking about scikit-learn, and

it was very much that it's this community involvement.

It's the back and forth both ways.

Travis Oliphant: 00:18:58 Yes. Nurturing the community becomes a really critical

part of early stage open-source development, and a really

early part. Scikit-learn is an interesting one actually,

because I remember when scikit-learn got started

because SciPy was trying to do too much. Essentially

SciPy had machine learning libraries, it had stuff in it

that was ... SciPy became this kind of ... It really was a

distribution of Python masquerading as a single library,

because the EXE file, just getting it all installed was a big

deal, and so it was easier to bundle. Not unlike my

conversation with Guido that took place years ago, where

I asked him, "Well, so why don't you care about

packaging? We don't have a good packaging story for

Python. What's going on?" He's like, "Yeah, I don't care

about packaging. If I want a library, I put it in the

standard library. So it's like, "Well, that's cute if you ..."

And SciPy had that same [inaudible 00:19:46] model, but

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
13

scikit-learn was ... The scikits were like, "Hey, we got to

have a way for people to share maybe documentation,

maybe patterns of development, maybe some collegiality."

 00:19:57 But it's got to be controlled by different people, because

that's when I really realized pretty quickly that people

don't scale. You need lots of people involved, and so you

got to incentivize those people too, and if basically ... This

is definitely true that I've had to deal with, is yes, there's

a lot of people who recognize me from things I've been

involved with and I was very, very critical to be involved

early, but then I can create a shadow. There have been

people who've said this to me, and I won't name names,

and I've also watched it in others, where they're like, "I

don't really want to be in your shadow. I don't want to be

the Travis-helper. I want to have my own brand. I want to

have my own story." And they may not even articulate

that to themselves like that, but I get that, I understand

that. A key part of the reason open-source is valuable is

because it does let developers have their brand, have their

story, so there's got to be a way to make sure people get

credit.

 00:20:45 That's actually one of the passions I have, is how do I

help people get credit for the contribution they make so it

isn't just masked behind the one figurehead that pretends

to take all the credit. I don't try to pretend to take all the

credit. I really want to celebrate the successes of all the

people that have made NumPy and SciPy possible. If I get

any notoriety, the goal of that notoriety is to drive towards

activities that give other people credit. That's the only

reason it's valuable ultimately, is it can help consolidate a

message so you're not dispersed, but how do I build

systems so that other people ... I want to incentivize this

open-source engagement and make it possible for people

to build careers on it, that's been ... So it will lead

probably to the other things I've been doing, but I'll try to

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
14

finish more quickly. I'm trying to give some backstory for

what I'm doing now.

Jon Krohn: 00:21:33 Well, we'll definitely we'll get to that when we talk about

OpenTeams later on. I also just want to very quickly, in

case people don't know, you mentioned Guido there

quickly, quite conversationally. And probably for many of

our listeners, that is something that people just know.

Guido van Rossum is the creator of Python, and so yeah,

that's just-

Travis Oliphant: 00:21:52 Yes, yes. A wonderful individual. A lot of Python's success

is because of him as a community builder. And I've had

the fortune of meeting with him, interacting with him,

particularly as we got SciPy off the ground, and

particularly as we got Anaconda off the ground. It's been

a few years since I've talked personally with him, probably

about five, but he's a great guy. Really admire what he's

done. And love what he's created, a lot of similarities. So

SciPy got started that way. A lot of people don't realize

SciPy came first. [inaudible 00:22:22].

Jon Krohn: 00:22:22 Yeah, I actually didn't know that.

Travis Oliphant: 00:22:24 SciPy came first. And I was building SciPy, released it in

2001, was shepherding it. Had graduate students at BYU

working for me, developing further modules in SciPy. And

I started at that point talking to the folks at the Hubble

Space Telescope who were building additional features,

they wanted more that wasn't available on Numeric. They

realized there was a need to build a better array library.

So they had started NumArray. And so there was Numeric

and NumArray were emerging. By about 2004 there was

two array libraries in the Python ecosystem, both being

used. And particularly there was a library called ndimage,

and as a student of medical imaging, ndimage had a

morphology image processing system that I was jealous

of. Like, "God, I want that in SciPy, it'd be great. I wish I

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
15

had that tool." And I had it, but it was in NumArray, it

was based on NumArray.

 00:23:18 And at the time, if I loaded my data, I remember I was

loading data in a numeric arrays early with DICOM

format. "Great, now I have it in memory, oh, but now I

need a NumArray version." And so I would have to copy it

over to NumArray. And so if you're talking about

gigabytes of memory, that's really a non-starter. And so

this is a problem. We can't have libraries built on top of

different array objects that don't share data in common

ways. So that was why NumPy exists, because I saw the

problem. There weren't that many people who could do

anything about it. I didn't know that I could do anything

about it either. I was a professor of electrical computer

engineering focused on electromagnetism and signal

processing, who use these libraries and knew some C, but

I wasn't a creator of languages and type systems. I

understood the ScipY extension capability, sorry, the

Python extension capability. I knew how to extend

Python, but man, taking on something like writing

NumPy was challenging.

 00:24:13 But I did. I had a class fell through as a professor. And

even though my graduate degree professor, sorry, my

department chair when I applied for tenure two years

earlier, had said, "Well, we like the progress you're

making, but you're kind of doing too much open-source

stuff. So probably got to think about maybe more papers,

more grants, less open-source." So I promptly go and

write more open-source with NumPy. Again, not because I

wanted to stick it to my department chair, because I just

tried to follow where the need was. And I saw this need in

the community, I saw this opportunity to do something,

and I just felt like, "Someone's got to do this." And you

look around and eventually you go, "Well, who's going to

do it?" I had already known enough about the

community, I was somebody that knew enough. I said,

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
16

"Oh, I can try." And it was daunting, it was, and I wished

I'd actually had me now to advise me then because ...

because there's tons of stuff I didn't know. And it's

embarrassing because it's in the code now, and it's like

the community's just recovering from that, honestly.

 00:25:14 But I guess I say that because look, desire is important

and you do your best you can, but you're not going to be

perfect. And that's what open-source can help you with is

actually make it better. And it takes a little bit of just, it's

okay, you don't have to ... A lot of young people I meet,

they have this impression that the first thing they do has

got to be perfect. And it really can stall development. It

can really stall doing something. I would say the most

important thing is be productive, do things, get things

shipped, and then be open to feedback. And the best

realization you're doing something valuable is feedback, is

getting criticism. The worst is apathy. You know you're

not succeeding if nobody cares. You are succeeding if you

get people criticizing it even. So, awesome. This is

something that I really like to get feedback.

Jon Krohn: 00:26:04 Yeah, that's a great-

Travis Oliphant: 00:26:05 But it's hard emotionally. It can be hard emotionally

because it is emotional a bit. The more effort you put into

something, it's your baby, you put it out there, you want

people to like it. And what I realized, and people did like

what I produced, but not because they were critical

technically. In fact, I needed some of that technical

criticism because ... So, I wrote NumPy in 2005, took

about another year for it to stabilize, and then I presented

it at the SciPy conference, which we'd started in 2001. So,

I presented it at the 2006 SciPy conference. And Guido

came to that conference, by the way, and he saw me

demo NumPy, actually, and he saw me demo the type

system. And I wished I would've understand at the time

what I built was a Python 1 type system in NumPy. I

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
17

extended the Python 1 version of the type system.

Wouldn't be till later that I recognized exactly what Guido

had done in Python 2, to integrate 1 style classes with

Python 2 style classes. And if I had just done that in

NumPy, we'd be better off. So, I've known that for a long

time.

 00:27:08 Now, finally, NumPy 2.0 is starting to fix that problem.

Sebastian, I forget his last name, Sebastian's been great.

He's been doing some really good work on the type system

in NumPy, and I'm super happy that we have some other

people working on NumPy full-time, or at least part-time,

because of Quansight Labs. So, that's what I did. I got

NumPy out the door. It did not help my tenure

application, despite lots of scientists liking it and

appreciating the work to get NumPy, and I knew I'd

succeeded with NumPy as soon as Matplotlib made a

dependency on NumPy. Right? It was before that making

a dependency on numerics, which was letting you pick

between the two.

 00:27:51 I'll say one more thing about NumPy that's really critical

because we fixed it twice. I fixed the immediate problem

of, oh, there's two array libraries, let's get one. But then

what's the ultimate cause of the problem was a lack of

shared data structure. It was a lack of a way to have data

that could be shared between arrays. So, we created the

buffer protocol in Python 2, and that's how I got to know

the Python developers better is they made several

contributions to the Python language itself. Some small,

the biggest one was the buffer protocol, which is basically

a way for a sequence protocol ... Python has these

protocols which properly understood or actually would be

better served as Meta-type extensions. This is something

that I should talk to the Python community about

honestly, because once I understand that, and it took me

years to understand this, it wasn't until about seven

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
18

years ago that I finally realized, "Oh, this is how the whole

thing could work."

 00:28:42 But the buffer protocol was a way for things to share data

to each other. And we're back to that actually, because

when I woke up from my entrepreneurial activities and

came back in 2018 to the NumPy world and what had

happened and where we are go from here. I look up and I

see a dozen array libraries in Python. We solved the

problem of unifying them in NumPy in 2005, but really,

we didn't have GPU support. We didn't have automatic

differentiation. We didn't have a funding model to get

those added. And so, when that came up in the deep

learning spaces, Meta, Microsoft, Google, they spent

millions of dollars, a lot of money basically rebuilding

tools, so PyTorch... And also because they came from not

Python land, they came from C++ libraries, and so forth.

I've come to know some of the history of those libraries

where they came from. Deep respect for the developers

thereof, but I'm still eager to see cooperative

communication because I think it could save us a lot of

time by just being aware of what's out there. But now

there's tons of array libraries, and so we're going to write

another one. We didn't do it this time. We actually went

and wrote data-apis.org. If you're interested, go to data-

apis.org and that will show you what ... It's a standard

we're building, the array standard.

 00:30:06 Building off of the buffer protocol, which already allowed

interoperability between arrays, so they can share the

same data because at that point, if the interface is a little

different, that's fine, as long as you don't have to copy the

data back and forth. So anyway, that's the history of

where SciPy and NumPy came from, but they've been very

important to me, to support the scientific use of Python.

Jon Krohn: 00:30:30 This episode is brought to you by Data Universe, coming

to New York’s North Javits Center on April 10th and 11th.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
19

I myself will be at Data Universe providing a hands-on

Generative AI tutorial, but the conference has something

for everyone: Data Universe brings IT ALL together,

helping you find clarity in the chaos of today’s data and

AI revolution. Uncover the leading strategies for AI

transformation and the cutting-edge technologies

reshaping business and society today. Data professionals,

businesspeople and ecosystem partners — regardless of

where you’re at in your journey — there’s outstanding

content and connections you won’t want to miss out on at

Data Universe. Learn more at datauniverse2024.com.

 00:31:08 There's a few threads that you mentioned in there that

remind me of my interview with Wes McKinney who

created pandas.

Travis Oliphant: 00:31:15 Sure. Sure.

Jon Krohn: 00:31:15 So, we had him in episode number 523 and similarly, he

created pandas because it was a need that he had, and

similar to what you're describing with NumPy, if he could

go back in time, he would do it all very differently.

Travis Oliphant: 00:31:30 Sure.

Jon Krohn: 00:31:31 And, like you, he is doing that. So, things like the Apache

Arrow project that he now does is to deal with some of the

key limitations that are now baked into pandas. And so

yeah, it's interesting to see that parallel journey.

Travis Oliphant: 00:31:46 Yeah. So in fact, what I'd love to see, one of the challenges

both of us have faced is that funding for that is not

prevalent, right? There really isn't a space to go and say,

"Oh, cool, you want to make NumPy better? Cool, here's a

million bucks." Instead, you have to go create a company

idea and then try to get funding for that company and

then hopefully some of that money for the company can

go back into another project.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
20

Jon Krohn: 00:32:10 Yep. Another [inaudible 00:32:10].

Travis Oliphant: 00:32:11 But it's not really solid. Yes, there are now some grants

you can get. The grant applications can be challenging

because that's a whole other style. So, there's multiple

parallels with Wes. And Wes and I are friends. We've

talked for years. I like to think that actually the D type we

created, that enabled record arrays, gave rise to the

pandas movement, because it was almost a data frame. It

hinted at a data frame. And they did, record arrays gave

you this idea of, "Oh, I've got this cluster of data, they're

all together." But the big issue was it was an array of

records. Right? So, it's row-based basically. If you think of

the orientation, it's row oriented because all the record is

together. The NumPy model is you have a big block of

multidimensional something, right? But there's a defined

something that it is, you can define the number of bytes

and so forth. So, that's an awesome model for many

applications. But having to ... You want to add a column,

right? You have to insert into the record and then remap

everything, right? So, it doesn't really make it easy.

 00:33:18 So, data frames, they're basically structures of arrays.

You can imagine a structure with multiple arrays, and

that effectively is one of the foundational elements of

pandas. Then of course, the APIs you put on it are a little

different. The kinds of processing steps you want to do,

the joining, the compute you do with the data frames is

also a little different. But yes, it was an interesting world

to watch. In fact, having written NumPy and then having

seen it start to be used, I had a lot of conversations with a

lot of people, including Wes, including the R community.

At one point in 2008, I talked to many leaders of the R

community who basically were like, "Well, could we work

together? Maybe we can merge our efforts somehow."

Because they were suffering under the strain of a massive

user community and very few developers, right? Which is,

it was a challenge because it's like there's lots of

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
21

scientists who use stats, but there aren't that many

developers who can develop infrastructure for [inaudible

00:34:14] thinking. We talked about that at length. I

think there are things we could have done, but there was

no money to support it.

 00:34:21 One of my desires has been to try to figure out how to get

the people with the budgets to talk to the right people,

because very often they don't. They end up going and

talking to the person nearest them who knows some stuff,

but is usually completely unaware of this other activity

that's been going on, and they don't pull in the right

people. Fortunately, I'm really fortunate that PyTorch and

Soumith, who's been leading the PyTorch effort for years

at Facebook then Meta, we were able to build a

relationship. And I reached out to both the PyTorch and

the TensorFlow teams and people in those teams to try to

build a relationship to see how do we connect these

emerging capabilities with the existing SciPy ecosystem,

and had a lot of success with Soumith, because of him,

we've been able to establish some things.

 00:35:08 And TensorFlow, we're still working on, they're great

people over there, but they have different ... You look at

the business infrastructure, and part of the reason is

because Meta, Torch was emerging in something called

FAIR, which is a research group, whereas TensorFlow was

part of the cloud infrastructure, they had to use it

internally. And there is actually work to create open-

source interfaces in a company, to create something that

can interface the open-source ecosystem and your

company. And you have to be intentional about that, and

not only intentional, but also make sure you're doing

some good things.

 00:35:44 So, I really like to promote people that are good dev rail

people, that understand that, and try to help work with

them. I look around at, what can I do to help right now?

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
22

And I'm always looking for where can I help? I like to

think I could code and I can code a little bit, but a lot of

people code much faster than I do. Mostly what I really do

well is help architect. Like I said, if I could help me

younger, I could have really helped me younger. If we

could somehow get that time machine loop going.

Jon Krohn: 00:36:12 Yeah. And there would be no harmful consequences to

that at all. Everything would work out perfectly.

Travis Oliphant: 00:36:16 No, of course not. No, no, no. It'd be totally fine. No.

Jon Krohn: 00:36:21 So, really quickly here, I can't remember now ... Oh, I

think it was talking about how NumPy was distributed or

I can't remember exactly what put me on this-

Travis Oliphant: 00:36:31 No, NumPy wasn't distributed, but it needed GPU, it

didn't have GPU support, nor was it working on more

than one node. That was another area. Yeah, that

actually leads to the Anaconda story, right?

Jon Krohn: 00:36:41 Yeah.

Travis Oliphant: 00:36:41 Those problems there. And so, I think it leads into the

business stories.

Jon Krohn: 00:36:45 So, right before we get to Anaconda, something that I just

dug up as ... So yeah. Now again, I can't remember what

caused me to do this, but I just thought to myself, how

much is NumPy downloaded every day? And do you know

offhand? So, looking at just-

Travis Oliphant: 00:36:59 I don't know.

Jon Krohn: 00:36:59 I can see easily from PyPi, so just from PyPi installs alone.

So, it doesn't include Anaconda, which we're getting into.

It's over 8 million a day.

Travis Oliphant: 00:37:08 Yeah. Yeah, that makes sense.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
23

Jon Krohn: 00:37:10 It's wild.

Travis Oliphant: 00:37:12 Now, some of those are bots, of course.

Jon Krohn: 00:37:14 Yeah. It's probably most of it.

Travis Oliphant: 00:37:15 I would say most of them because it's in the build

infrastructure, especially recently. What I'd like to see is if

you look at the growth there, we saw some of the things

Anaconda, but it is hard. It actually illustrates one of the

challenges of open-source is telemetry or just statistics

about usage. Because one of the things I learned later is

that people want to fund stuff, but they want to know,

"Well, what am I funding?" And that kind of information

about who's installing what, where, could be helpful as

people try to understand, "Okay. Where is the energy

here?"

 00:37:46 So, I joked before, nobody sends Christmas cards. Nobody

sends postcards. They don't tell you what's happening.

You don't. A lot of people when I was early, early

contributed to open-source. Many of the old guard of the

people who are older, they were really nervous about

getting overwhelmed with support questions. I remember

this like, "Oh, we can't open-source that. I can't handle all

the support requests I'll get." I'm like, "Okay, I hear your

point." So, that hasn't happened. I would say the opposite

has happened. Right? I don't get enough support

questions. And then of course not right now, I'm not at

the front lines of NumPy support. So, please don't

inundate me with your support questions about NumPy.

You can have them, and I have a sales team-

Jon Krohn: 00:38:29 You just said, "I don't get enough support questions."

Now all of our listeners are going to be sending you-

Travis Oliphant: 00:38:29 I know. [inaudible 00:38:35].

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
24

Jon Krohn: 00:38:35 You're going to get postcards from all of our listeners.

Travis Oliphant: 00:38:36 I know. Well, postcards are great. Feel free. That's great. I

mean, I actually really love meeting people. And please do

it. I love it. LinkedIn messages or emails, "Hey, this saved

me in grad school. I really love this." I mean, I love that.

That's helpful. It's what I've wanted to do. That's actually

the whole point. I do have a family, one thing some people

know about me but isn't often known. I mean, I had three

kids in grad school. By the time I was writing SciPy at all,

I had three kids. Right? So, I was also a fan of, "Well, how

do I fund all this stuff? How do I make this work? My wife

and children are expecting me to provide for them." We

made the choice in our family, my wife would stay home

with the kids and she'd essentially focus on making our

family and having our children be productive people. And

a lot of work there, a lot of work there.

 00:39:26 But I had to figure that out. It was just a necessity. It

wasn't just a, "Oh, I hope I can figure this out." It's like, if

I want to spend time in open-source, I got to have a job to

do it. And so, I got to find them or I got to make them, or I

got to create something that makes this work. So, that's

why I spent a ton of time as a grad student besides just

writing SciPy, and early on was reading economic

literature, reading about how does economics work? What

is this business of business? How does this make sense? I

learned a bunch of stuff that were really impactful for me

in trying to think about, "How am I going to do this in the

future?" You have to understand that about me.

Jon Krohn: 00:40:06 What does your biomedical engineering department head

think about all the economics books?

Travis Oliphant: 00:40:11 Yeah. I didn't really tell him too much about all that stuff

I was reading. My graduate professor was pretty good.

Jim Greenleaf out of Mayo Clinic, really awesome

ultrasound dude. As long as I was making progress

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
25

towards papers and getting a thesis out eventually, and I

only took four years to get my PhD thesis done, so I was

fine. They were pretty hands off. He didn't get into what I

was doing. So, all the open-source engagement, I built a

cluster of Apples. I went around Mayo Clinic and gathered

these old MacBooks, they stacked really well together,

actually, these little Mac boxes. Put Yellow Dog Linux on

them, hooked them up with PVM and made a little cluster

to simulate MRI, and stuck it in his lab, and he was fine.

I mean, sure, it was interesting.

 00:40:58 But I learned the internet that way, actually. I learned

how internet works and TCP/IP, and I didn't use MPI. I

just wrote C++ libraries to talk between the computers.

It's where I learned the problems of C++. I like C++, but I

learned the problem of over-abstraction. It's very easy to

write abstractions where you end up wasting time.

Abstractions at the wrong level can be a complete

problem for speed, and that's true today, that's still a

problem today, which is why C++, while very good, can be

a problem if it's over-relied on. So anyway, learned all

that. All that, I'm pretending I know everything, but

learned a ton doing those projects.

Jon Krohn: 00:41:39 Data science and machine learning jobs increasingly

demand cloud skills with over 30% of job postings, listing

cloud skills as a requirement today, and that percentage

set to continue growing. Thankfully, Kirill and Hadelin

who have taught machine learning to millions of students

have now launched CloudWolf to efficiently provide you

with the essential cloud computing skills. With

CloudWolf, commit just 30 minutes a day for 30 days,

and you can obtain your official AWS certification badge.

Secure your career's future, join now at

cloudwolf.com/sds for a whopping 30% membership

discount. Again, that's cloudwolf.com/sds to start your

cloud journey today.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
26

 00:42:18 Yeah, and sorry, I've taken you off the track several times

now. So, we were going through the creation of SciPy,

NumPy, and then we were just about to get to Anaconda,

and I completely took you off track.

Travis Oliphant: 00:42:30 Totally fine. Anaconda came about as a combination of

technical innovation and business desires, right? So, I left

academia because they told me they were going to give me

tenure later. They said, "Well, wait and reply in two

years." So, they didn't actually say leave, because I

mentioned before how my department director said, "Hey,

write more papers and more grants." And I wrote more

software. And so it was like, "Well, we're not quite ready

to make an assessment of that yet, so please just come

back in two years." And at that point, I was already really

interested in figuring out how to make business work in

open-source, and I didn't want to go through the process

again. And so, I left academia and came to Austin, Texas

to explore business and had the benefit of working with a

friend at the time, Eric Jones, who had started

Enthought. And he brought me in. And it was a

consulting company that was also figuring out how to

build businesses and open-source and make them work

together. And so, we worked closely together for a while.

 00:43:34 And then at the time, there were two problems I really

wanted to tackle that we weren't going to tackle at

Enthought at the time. Eventually maybe they were going

to, but it wasn't fast enough. So, I wanted to tackle them

faster. One was scaling NumPy. I saw already NumPy

array processing at scale, saw that problem at JP Morgan,

saw that problem at other companies, said, "Oh yeah,

NumPy works on a single node. How would you do a

NumPy at scale? What does that even look like?" pandas

was just emerging at the time, knew a little bit about

pandas in 2011. There's previous data frames before that,

data array. We talked about labeled array. We talked

about the data frame problem for the past couple of years

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
27

before that. So, how do you scale that? And so, we started

Anaconda, basically, we're going to scale array computing

and scale data computing in Python. And then the other

problem was we were building a lot of GUIs for desktops,

and helping scientists build GUIs for desktop was a big

part of our work.

 00:44:28 And I saw the future was web GUIs and okay, well, I want

to make sure that people can do that in Python. I even

had a little meme that I did not want in 10 years, all my

scientists had to write JavaScript. I was like, that'll be a

terrible outcome. I don't want the world to have to write

JavaScript. And so in 2012, there was a little ... So, that

was why we started Anaconda, was to do that, right? To

create this business that also experiment with a funding

model. I'd learned consulting business model from Eric at

Enthought and really appreciate him, and he's done

tremendous work in doing that. I have a lot of respect for

Enthought, but wanted to build a product company and

do the VC route and figure out what it meant to raise

money and understand that world a little bit better. So,

that's why we started Continuum Analytics, which was a

consulting company to start with, incubating products.

Right? And we incubated a number of products and

eventually found one that started to resonate and grow,

and that became Anaconda.

 00:45:29 But Anaconda came about, it was embedded in everything

I was doing. Like I said, SciPy itself was a distribution of

Python. We'd explored packaging problems, but again,

partly because ... And it's still a problem, and this is a

deeper conversation we probably don't have time to get

into today, but Python still has a packaging problem, but

it's actually not a technical problem. It's a social one. The

technical problem is actually solved, mostly. There's

incremental things you can do. There's definitely ideas of

how to do those. But right now, it's a social problem

actually. It's the problem that other people have

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
28

characterized as the tyranny of the unemployed, the

tyranny of the occasional developer. And I was an

example of this. People could say NumPy should have

been better because I wasn't listening to the people that

already had the knowledge, because they didn't talk to me

and I was on the fringe and I didn't know how to

communicate with them.

 00:46:21 And this is true of Python packaging too. You get a lot of

participants. People are eager to help Python packaging,

but they don't know very much. They know about their

problem, they know about the things they're seeing. And

then you have the python.org site that ends up getting

messages about, "Oh, this is what you should do." And

it's very uninformed actually, most of the time. Now, they

try, they want to fix it. They're open to suggestions. That's

great. But it's also hard. Making a suggestion and getting

a change in an open-source community like that, where

there's the bike shed problem of the more people that

have an opinion, the harder it is to get anything changed,

means that a lot of people end up making choices that

aren't helpful for them.

 00:47:00 Now, that said, there are a lot of great people involved.

This is not dissing people. This is acknowledging a feature

that is the other side of open-source development where

yes, it leverages the free time of people. And it's partly

why I want to engage more with people, not just free time,

but full time. And then how do you do that, engage with

people full time, but while also not allowing corporate

capture of the community, letting communities still have

their independence and their participation-based

methodology and community-driven as opposed to, "Oh,

to run this project, you got to be employed by this

company."? So, I've differentiated between company-

backed and community-driven projects for that very

reason and have obviously lots of opinions about that.

But I'll probably articulate it best by the talk I gave to the

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
29

Python Packaging Summit last year. And I've strayed

away from some of these conversations because at

Anaconda, we ended up building a distribution of Python,

and we created a package manager.

 00:48:03 And why did we do that? Why did we create that package

manager, Conda? Well, we looked at the ones that were

out there, we said, "Well, maybe we can piggyback on top

of what's out there. Can we piggyback on RPM?" We

wanted to support Windows, Linux, Mac, and make a

seamless experience for everybody on those ... On users

in particular, not developers. That's an important

distinction, actually, users, not somebody who's going to

go develop something. And this is where I think if we'd

done a better job engaging with developers and making a

better bridge, we could have saved everybody a lot of

headache over the past years, but our focus was making

a really good user experience for the person who's going

to start using Python for science and data. I think we did

a good job of that actually.

 00:48:44 What we didn't do was help the Python community

understand that use case. Well, it was also developing a

distribution mechanism that still does not solve the

problem actually, and it creates other problems. So,

there's this disconnect now. And I see people all the time

today, they're like, "Okay, Conda is great, but it doesn't

work because of X." And that doesn't work because of X is

well, it actually works just fine. But you've gone and now

you're using an emergent distribution from python.org.

And then assuming that that'll work well with a Conda

distribution, it's like that's actually a difficult problem.

And so, well, you're stuck with the emergent distribution

that pip is telling you about.

 00:49:26 It works quite well to have Conda be your package

manager for binaries, and you can pip install on top of

that source packages. But when you start mixing the

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
30

binary distributions, you're going to have trouble. That's

true of every single package manager out there if you ship

binaries. But it's a problem. I try to characterize it like

this, don't install vendored wheels. That's the problem.

And it's all over the place. And if you're installing

vendored wheels, just put an asterisk because you know

you're going to have problems. You can do it and if it

works, fine, but don't blame everybody else when you're

... Because the problem is those vendored wheels.

Vendored wheels, they're a duct tape. There's answers to

that besides vendored wheels. And what I mean by a

vendored wheel is I'm installing NumPy. Well, NumPy has

a reliance on BLAS. BLAS is a basic linear algebra

subsystem that is a C library that's available in multi-

flavors. But NumPy doesn't control BLAS, it just relies on

it....It's a dependency.

 00:50:27 But BLAS is not a Python program, it's a C program. And

so how do I ship BLAS on PyPI? I don't do that. Why

would I do that? But yet when I install NumPy, I need

BLAS, right? And so Conda manages this by having a

BLAS library that you install, that you have a dependency

of separate build process. You have a separate versioning

control and it all works together. And you can get NumPy

working with a BLAS component. But on PyPI you have a

vendor wheel. You've just basically installed the NumPy

binary wheel with some version, that, hopefully you have

an answer of which version it is, you're not quite sure.

Just the binaries are copied into there, and you ship that.

Okay, I mean it can work. And if you do that once, maybe

it's all right. But you essentially immediately have a

technical debt. And what unfortunately the Python

community has encouraged is the growth of technical

debt in the packaging world. And so this is my complaint,

and the way I characterize it, I say actually the Python

community has created a channel conflict. They have a

channel problem.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
31

 00:51:30 A lot of companies have this problem where they want to

enable their people, but Python should be enabling all the

channel partners out there who help their people get

Python. If you look today and say, "Hey, I use Python."

Cool. How do you get it? Actually a dozen... We had a

podcast actually where we invited all the people that

create distributions of Python, kind of other ways to get

Python besides the emergent python.org distribution,

which I call it an emergent distribution because that's

what it is. Nobody controls it. It's just kind of is whatever

it is that's on the basis of a bunch of people out there.

And it's cool. I mean, I'm not against it. It's like a cool

reference distribution actually, but I am against the

company relying on it. I think, if you rely on it, you have

to own... You can just use it as a place to start. But you

as the company then have to own the distribution.

 00:52:19 And now your people who are installing Python under you

as a company, they're getting it from you. And so it is

helping the Python community understand that they need

to have channel partnerships with all the people that

they're helping. And effectively they're not. The Python

Packaging Authority is essentially championing one

emergent distribution instead of encouraging and being a

system to help all the channels do a better job of

cooperation integration. So that's just an example of a

problem that's an open-source problem that emerges.

Jon Krohn: 00:52:52 And I suspect that this problem is also the one that you

left... So reading all those economics books as the grad

student at the Mayo Clinic, you saw this as, there is an

economic opportunity there. Right?

Travis Oliphant: 00:53:05 Yes.

Jon Krohn: 00:53:05 So you're just describing how the corporates need to be

able to rely on a distribution, and don't want to have to

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
32

manage that themselves. And that is how Anaconda got a

huge-

Travis Oliphant: 00:53:12 That was the product.

Jon Krohn: 00:53:12 On a skyscraper.

Travis Oliphant: 00:53:12 Correct! That's how it got a global on skyscraper because

we saw there's an economic opportunity there. And

there's many, and Red Hat did the same thing. I mean,

there's other companies that do this, but what I'm saying

about the open-source communities is, rather than

interfere with those opportunities, they should partner

and essentially stand for something. And there's lots of

things for the PSF and the PyPI to stand for, things like

purity of the projects, let the communities govern

themselves, have them their own footprint, have them

have a place to have a voice. Because what you don't

want is big companies, I think, this is what I don't want. I

don't want to see big companies controlling the open-

source communities they rely on. I want to see them

supporting them. And there is absolutely a thing of

community capture, right? You see that also in the

Apache Foundation's mantra. Apache wants the same

thing. They support the same model, which is great.

 00:54:07 Anyway, that's a deep topic we could go on for hours

about this, but it is at the heart of what I've seen and

what I want to help happen. So Anaconda found a

product to sell that was very helpful for companies relying

on open-source, that could engage with communities. But

of course, executing on that mission is always a

challenge. There's a whole other chapter of the story there

about the investor relations and how is it I was CEO and

now I'm not at the company? And that's a whole journey

that requires some nuanced conversation. That if you're

interested, anybody, ping me? We can talk about that,

but probably not best to air here.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
33

Jon Krohn: 00:54:42 There we go. Okay. I won't press on that, but what I

might press on then is another open-source library that

you are hugely involved in, but might not be as familiar to

our audience as SciPy, as NumPy, as Anaconda, which is

Numba.

Travis Oliphant: 00:54:57 Yes. Thank you. So Numba is awesome, and fortunately I

wrote the reference version, and then very quickly found

Siu Kwan Lam, and then several other people who

actually helped build Numba, make it better. But when

we started Anaconda, that was one of the things we ended

up doing was actually writing a compiler for Python called

Numba. And I remember bringing that to market,

bringing that to the community, bringing that to the

Python community. I got all these questions, wait, have

they even swallowed? PyPy was out there, PyPy, not the

Python packaging index, but the Python compiler. PyPy,

P-Y-P-Y. Anyway, lots of people who said Python

compilation, illustrating again the dichotomy between the

computer scientists and the domain scientists who use

computers. That was the PyPy people. They were writing

something for computer scientists, like a compiler for

Python. Cool, awesome. I was running with Numba, a

compiler tool to create extensions to Python without

writing C code.

 00:56:01 And it again came from a fundamental itch. I had a

fundamental need I had. So when I wrote NumPy, NumPy

is an array object and a ufunc object. The universal

function, ufunc. And a ufunc is something called multiple

dispatch. It's a multiple dispatch mechanism in Python.

And it's a concept people talk about a lot, not in Python

land, because in Python land they talk about multiple

inheritance, single inheritance and object oriented.

Multiple dispatch is like, I have a function, but they've got

three arguments. Well, which object has a method that

influences function? Well, if you have three arguments,

which ones should it be? None of them, all of them.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
34

There's a separate... So you have an independent table,

you don't register the table with respect to the objects.

You register the ufunc, essentially, there's a table for

every function, and that's all it is. It's a lookup table to

say, I've got these arguments. Pick which underlying

implementation I'll call, if I have ints or floats or strings,

whatever I call that function.

 00:57:01 So ufuncs do that. There's a lot of things they do actually,

make it very nice to do math and mixed math with floats

and integers, and then particularly double precision,

single precision complex, double precision complex, single

precision complex. You have a lot of these different... And

they all have to be written, compiled at least differently,

the machine code that's run is a little different based on

which type you're running for. So the ufunc, something

has to navigate between the python spelling and which

code snippet you're pulling in, which machine code you're

pulling in. That's what the ufunc does. So great. How do

you make new ones? Because NumPy comes with a

bunch of them. Cool. What if I have a new function I want

to write like sci-fi special added a bunch of them.

 00:57:44 Okay, great. I want to write it. You can imagine writing a

python function. A simple example is the Sinc function.

It's the sign of pi x over pi x, is one incarnation of it. But

what if I wanted that as a ufunc? Well, I could write it in

C. The only way to do it, and there was a way to do it. You

had to write C code and compile it. I wanted to write that

in Python, and there was a decorator called Vectorize, and

that's in NumPy from the beginning, NumPy Vectorize. So

you could create a python function and the Vectorize

would take that scalr kernel and then make a ufunc that

would call that function at every element. Cool. It would

add a new ufunc. Cool-ish, but the problem is it wasn't a

compiler. You need a compiler to do that. The vectorize in

NumPy didn't compile. What it did is it made an object

array ufunc.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
35

 00:58:32 So object arrays are simply, every element of the NumPy

array is a pointer to a python object. So logistically

useful, because you can organize your thoughts in an

array nicely, but it's not fast. You're basically going

through the interpreter every time you make a call. So I

had Vectorize, but it was going to the interpreter. So if

you have a big array, lots of elements, could be 100 to

1000 to 10,000 x slower. So I wanted a way to write a

function in Python that could go into that ufunc table. So

I just wanted to compile and get machine code in the

right table, a function pointer. So how do I make a

function to function pointer that's not all of possible

Python, just the use Python spelling to get code. That was

the goal, and it's like, yeah, we can do that. LLVM was

there, Low Level Virtual Machine. I said, "Oh!" Like I said,

it's easy to write a compiler if you're not writing the parser

or the code generator, because essentially what you're

doing is translating Python either by code or Python,

abstract syntax representation to the LLVM intermediate

representation. So that's what Numba did, is it translated

the Python bytecode to LLVM IR. Basically it played the

Python bytecode and emitted LLVM IR for a subset of

Python.

 00:59:47 And it was actually surprisingly, I could do it as a person

who never write a compiler before. And I learned a ton

along the way, and then other people wrote better code

and it worked. It's like, wow, I can actually now write a

vectorized, and we do number has a vectorized function

that lets you write a Python syntax and build a machine

code level ufunc. And that's amazing. That was really the

goal, and we did it pretty quickly. And then it was like,

well, we have a compiler now. What else can we do? And

so then we kind of built a jet and then kind of this

gradual just in time compilation for NumPy-like code.

Lots of extensions that really could have been... And

Numba was another example of an open-source project,

succeed because some really smart people got involved.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
36

And then it's been funded by Anaconda. We can go into

detail about Numba. Numba, it's a harder code base for

users to get involved with because it's a compiler.

 01:00:41 And if you're a domain expert, which uses Numba it's

kind of hard to go from, I'm a domain expert using

Numba to now I'm contributing to Numba because I've

learned how a compiler works. It's a different thing. But

that space has exploded. We were very early. That was

2012 when we released Numba. We had a version that

actually targeted GPUs. You could actually have, it was a

fast vectorized. Basically the vectorized code would go on

A GPU. And we had massive, like 10,000 x speed up,

because you could go from your object array you

vectorized to GPU supported vectorize. It was amazing.

And there's a little gamification there, but it's possible.

And that's still happening today. That's still happening.

But what I find is a lot of people get confused and they

start talking about Python compilation. You have to be

very clear about what you're doing because compilation

just simply... It's translating high level language, high

level specification to machine code. And I look forward to

a future where Python interface to LLM gives you a... I'm

basically orchestrating compilers. And Siu is a great... I

still have regular conversations with Siu.

 01:01:52 I think Numba has a bright future, but there's also JAX,

there's PyTorch compile, there's Triton, there's lots of...

There's five others, there's L Python. It's actually a fun

place now. Where there's a lot of people realizing, oh

yeah, this is possible to write Python compilation, and

now lots of money involved. They typically don't talk to

each other. They typically do their deep stack stuff and

try to find... I'm excited today about finding high level

cooperative IR, intermediate representations. So LLVM IR

is pretty low level and bytecode is Python. Is there a,

MLAR is one place. Is there a place to have these higher

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
37

level intermediate representations that are not quite low

level IR, but a place to target?

 01:02:36 Because then you can have other tools target that, and

it's a really easy way to cooperate if you can find a

plateau of cooperation. In fact, I think that's a big deal

and will continue to be a big deal as LMs enter our world

and let people write English code to generate something.

But what are you generating? I think what you're

generating becomes that plateau of cooperation. That's

really interesting and will continue to be, because the

thing you generate still has to be editable, still has to be

maintained by a human, but it doesn't have to be all the

domain experts to maintain it. We've got to have a class of

people that can. So anyway, that's a whole topic of future

potential progress I'm looking forward to.

Jon Krohn: 01:03:14 Also, generative AI also makes it much easier for people to

be able to dig into code that they otherwise might not

understand.

Travis Oliphant: 01:03:21 Yes. Oh yes, that's exactly right. Thank you. Thank you.

Thank you. Yes. Could you imagine? I can translate from

that to code. I think that's also a brilliant thing. You talk

about a lot of people, and it's true, AI will replace certain

kinds of tasks, but as the optimist I am, I say, that's fine.

Let's get rid of the tedious jobs and let's use AI to help

people have better jobs.

Jon Krohn: 01:03:42 Exactly.

Travis Oliphant: 01:03:42 Where they're doing things that are better and easier for

them. And can we use it to shorten the training path? The

reality is there is the problem of, okay, I need to get better

at what I'm doing. I need to learn something different to

participate in the economic model. And I'm totally for

supporting people in that journey. But we should, this is

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
38

great. There's huge opportunities here all over the place,

actually.

Jon Krohn: 01:04:04 Speaking of making things better or easier for people, a

interesting item that came out of our research on you was

when you were on the Lex Friedman podcast, you talked

about how programming languages can limit or expand

thinking. So I thought that's really, really interesting. So

given all the work that you've done in Python, particularly

for scientists, with that kind of use case in mind, coming

from your science background, how do you think Python

has influenced the thought processes of scientists and

engineers and what they can do in their work?

Travis Oliphant: 01:04:33 Well, that's a great question and one that should be

asked by a lot of people or to a lot of people. So I will say I

language structures your thought, fundamentally. So it

helps you say more, like when you talk, you then realize

an ephemeral firing in your brain, and then it promotes a

question you're going to answer then again. And so it

actually inspires your thought. And so the words and the

symbols, the tokens that are essentially a manifest by

language can influence future thought. And in Python in

particular, what I would say is it's enabled introduction of

higher level programming concepts to domain experts. It's

not hard to get your head around a function call, but

even a function call has to be explained. Oh, the fact that

I can take my lines of code. If you look back at the

Fortran era, scientific code was statements a mile long, all

in one big linear sequence.

 01:05:29 And you go in there and say, "Ah, we can actually break

this up a little bit. You notice how you're cut and pasting

this segment of code three times. Let's make a function

out of that. Let's actually change that." And now if you

make changes, you don't have to make it for 40 places.

You can make it in one place and everything benefits. So

these are concepts, essentially programming concepts. So

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
39

I would say helping Python, the more domain experts get

software engineering principles in general is a big way

that Python has helped. It helps to the degree that there's

a transition, because I don't recommend somebody new to

Python diving into async programming or category theory

from the typist, from the type theory folks. As Python has

grown a bigger community, there are definitely a place to

get lost. And that's true, but yet there's something to

learn from that.

 01:06:18 Because the nice thing in Python is, whatever it is, all the

way from just how to do a simple loop structure, a simple

function calls and stitch together variables, all the way to

compiler theory and intermediate representations and

equivalence graphs, it's all possible to learn. Some of that

can actually help your thinking about other things. You

think about how do I approach a scientific problem,

hypothesis testing? Well, it's kind of similar. You have to

structure your thinking, look at the results of the output,

ask a question that's falsifiable, and try to get an answer

to that question. And programming is also rigorous in the

sense that the computer does what you tell it to do, and it

only does what you tell it to do. It doesn't cooperate with

you yet. I mean, maybe AI will help with this, but even

then, I think we still need to be very clear. I've spent so

much time tracking down a bug because the computer

did exactly what I told it to do. I just forgot to tell it.

Jon Krohn: 01:07:19 A really cool conversation that we had recently on the

show was in episode number 754 with Jason Warner,

who has just started a company, well, he didn't just start

it. It's a company called Poolside, and in the coming

months, they're going to release their first LLM to the

public, and it's an LLM specifically for coding. And I didn't

expect his episode to be so mind blowing, but it was

because he made the case, compellingly in my view, that

a code generating LLM that writes code that compiles,

could be a critical step towards an artificial general

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
40

intelligence. Because we have so much training data out

there, so much code examples. And because it has to

work, like you're just saying, unlike natural language,

which can be ambiguous, the program language just

must work.

Travis Oliphant: 01:08:13 Yes. I actually really agree. I think that's a limitation, and

I agree that's a really insightful observation. I've been a

little surprised actually, how LLMs can create code that

works. It doesn't always.

Jon Krohn: 01:08:29 It doesn't always. But the amount that it does blows my

mind. Absolutely.

Travis Oliphant: 01:08:32 It blows my mind too. It's almost like, well, it did train on

existing code that worked. So if it's using those spellings,

those aggregation of words work. So there's a structure

there. There's a real structure to code. That's been a

surprising result, but I think one that's super fascinating,

and the feedback is what's essential. So yeah, I've heard

lots of anecdotes, and myself also have this anecdote of

the copilots help talented engineers work faster and

better. And I agree with that.

 01:09:06 It means that they're less inclined in you to use interns,

but there's still a lot of people wanting to engage with

interns. And so I think there's answers to that. There's

actually a big thing I'm doing right now, it's called

POSSEE POSSEEe.org, P-O-S-S-E-E.org. It's really new.

Hopefully by the time this airs, there'll be more out there.

If there's not... Some people realize that for me, I have big

dreams, some of them I can bring to reality in the next

month or two, and some are going to take the next year or

two. But I want to hit this one because it's a big thing

that has a lot of potential, and I'll be doing for a few

years, even if only in my spare time.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
41

 01:09:45 It's enabling the gap between the emerging work study,

the emerging educational students, people all over the

world who want to get into programming, get into making

a difference in a world where internships are a little

harder to come by unless they're managed. So we

basically create managed internships for open-source

contributions. That's what POSSEE does. Practical open-

source sustainability experiences for education is what it

means. So I'll talk more about that later. I just want to

put a brief bookmark. So if you hear this podcast, take a

look, see how you can help. Love your participation.

Jon Krohn: 01:10:21 I mean, now could be a good time in the episode to

transition over to the commercial stuff that you're doing

now. Let's do that. Yeah, so if you want to talk about

POSSEE a bit more now, let's do it. And then we can get

to OpenTeams and that kind of stuff.

Travis Oliphant: 01:10:31 I'll talk about kind of the things that I'm doing that... This

is a new venture, and I will say generally commercially

what I'm doing is a continuation of the Anaconda story, a

continuation of my academic exploration of projects, and

then the economic education about how do I make this

work, first for me? I'm scratching my own itch first of all,

I've got to have a career. I've got to support my family, but

then of course, I want other people to have the same

experiences. I want to be able to, well, how do I help

others who are on this journey have an easier time than it

was for me, for example?

 01:11:04 So that's really what defines me right now, and it's

defined me for 20 years. So Anaconda is an outgrowth of

that. When I left Anaconda, I realized, I want to see a

world with a lot like thousands of multimillionaires,

hundreds of thousands of multimillionaires, not

thousands of billionaires, not hundreds of trillionaires.

That's what I want to see. I personally would rather have

100 of my closest friends be worth 20 million each, than

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
42

me be worth two billion. Maybe that's a quirk of my

nature. I think a lot of people are that way too.

 01:11:38 I don't mind organizations with lots of money. I don't

mind organizations having assets, but they need to be

managed by a group of people, not just having one person

who owns it all. Now, other people disagree. But it stems

from my recognition that, yeah, I know some stuff and I

want to ensure my knowledge is shared, but it's the

collective knowledge. It's getting groups of people

together. And there's dangers in having power

concentrated in single people. There's real dangers, and

it's a weakness in our humanity. The history shows us

this throughout history, lots of human efforts have failed,

essentially on the back of the human ego and on the

problems of ego.

Jon Krohn: 01:12:20 Yeah, we're not a political show, but man, we would have

a lot to talk about if we dug into that today.

Travis Oliphant: 01:12:27 That's correct. And the good news is I don't have... It

translates lots of ways to the political spectrum. The

principle is that there's this MRI study that was done that

impacted me, when it showed the MRIs of CEOs. People

had been in a situation where effectively they'd only been

said yes to. And I've seen this already, even with my... I

mean, I'm not a powerful person, but I've run companies,

I've had a position where I impact the salary of somebody

or the bonus of somebody. I try to share that load, but

eventually there's an asymmetry there, and it's really

hard. You have to be very intentional to get people to tell

you bad things, tell you things you don't want to hear. It's

actually not easy to do. And in fact, they've shown that if

you're in a position, your mind will change. Your brain

changes. The part of your brain that's more aware, your

empathy part, that's looking for how to engage with other

people. It actually shrinks in people who've been in a

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
43

position where they've just essentially had yes people

around them.

 01:13:30 So it's a human nature problem. It's a part of our nature.

So I don't want that. I want a world where we have lots of

cooperatives. So when I left Anaconda, I said, "Well, good.

How do I make steps to try to make that world, or try to

impact that world?" So Quansight, we created Quansight

to build on the successes that led to Anaconda, which

was data science consulting, and really tied to open-

source projects. Added an open-source research lab,

Quansight Labs. So we have, Quansight Labs, and then

this other component, it's like an innovation component.

It's a venture fund. It's an investment in other open-

source companies, and some of the benefit of that will

benefit labs if we make returns from these companies, it'll

go directly to fund open-source research and labs. It'll

also, we have an entrepreneur residence program so

people can work and try to build a company, even though

they can't full-time yet. So we help people kind of prepare

for that, see if they want to do it, see if they're actually

ready for it. Not everybody should make a company, but a

lot of people can join early stage companies, but we have

an entrepreneur residence program. That's Quansight,

and we did it intentionally. We said, this is what led

Anaconda, let's create the substrate to lead to 15

Anacondas if we can, more companies like this. So, built

this thing and then we're always looking for capital

partners. I don't have enough money to fund it all to the

degree I'd like to myself, but we do a lot we can and find

other capital partners to support us. And then, we've had

a few spin outs from that, essentially. So, that's the

foundation, Quansight, Quansight Labs, Quansight

Initiate. And we've been able to create a few other

companies spinning out of that.

 01:15:08 Being able to, first of all, invest in about 13 other

companies, these are just seed level investments into

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
44

other people's startups, particularly where we feel like we

can have an impact, we can help them, provide guidance,

provide advice, provide help, hiring the first staff,

whatever. And then we've also, ourselves, spun out, as a

venture studio, additional companies that feel like they

have a role to play in fulfilling the whole mission of

supporting, connecting open-source communities to

company business opportunities, which is a massive

space. The massive Quansight Labs Initiate, this could be

replicated, there could be 15 of these companies out

there, I don't have to have the only one. It's almost like

here's a pattern you can follow and there could be 15 of

them. Because I think, one, I just saw a notice that

there's some venture capital people doing this, which is

brilliant.

 01:16:01 Every single venture capital company out there should

have an affiliated open-source research lab. It's silly they

don't, honestly, it's completely... They should. But they

need to run it well. And so, if you're going to do that,

please call me, because don't stick your head of VC

investment in charge of that. Let's talk about how to do

that well, because you can screw it up pretty badly, but

you should, and you can, have a really good open-source

resource lab. And you could support a lot of stuff, and

they get tons of companies showing up out of that. So, I

think that's a pattern I'd like to see replicated, we've been

pioneering. And I can explain how that works to anybody

who wants to know. And then, of course, open-source

consulting. Every single open-source project out there

that's successful can have several consultancies around

it, and that's a way for people to... That's the way I've had

take home, that's the way I've supported my kids is,

"Okay, I don't know how to make money all the time, but

I can make money consulting." That's how I committed up

at JP Morgan. That's why I'm sitting there, and it's not

always fun. It's not always working on exciting stuff, but

I'm always learning, you meet great people. For me, it's

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
45

been fine, because I love people and I love meeting great

people and I love working on interesting problems. And

then learning what I can from that to build something

new. So, that's what we're doing at Quansight.

 01:17:19 Then we created this OpenTeams model. And people look

at what I'm doing, going, "How are you doing all this?"

Well, I'm not doing it myself. The only way is to find great

people. And when I started Quansight, I said, "We're going

to build products, we're going to build people, talent,

projects, and products." So, it's about people. And every

time I have a new company, there's somebody else there.

Sometimes that doesn't work out. When it becomes really

difficult is when that doesn't work out and the people

move on and I'm left going, "Okay, I guess it's me still."

Then I have to figure out how to fix the issue and find

other talented leaders. But OpenTeams, its whole story is,

I want people to be successful with open-source, I want

every company to be. With all the Fortune 500 consulting

I've done over the past 15, 20 years, I see a lot of bad use

of open-source. And bad simply means wasteful. It either

hurts the community or it doesn't use it, and they spend

way more money than they should. So, lots of technical

debt. Instead of getting the power of open-source to

enable them to build their value add on top, they end up

recreating problems inside the organization that are not

solvable to have technical debt. So, I want to help people

do that better.

 01:18:29 And so, OpenTeams has that mission, and we do it by

basically creating a marketplace to connect. We have a

sales network and we have an architect network, and

then we have partners who are selling out solutions, and

then we basically go to provide business process

operations to help our consulting companies. They don't

want to build the HR team or the admin team or the other

pieces that make a consulting go well. I want them to be

able to focus on their story. So, Quansight can focus on

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
46

his data science story, on its generative AI story and not,

"Okay, how do I have an HR team and how do my finance

team work? And how do I support my sales team? How do

I support my marketing operations?" OpenTeams does

that for consultancies, and then also helps them cross

sell to each other. So, one company sells data science

really well. Okay, great, we have a salesperson with a

strong relationship with their procurement guy at their

company. Well, that company also needs web

development. That company also needs Rust support.

That company also needs JavaScript. Any kind of other

development that isn't the sweet spot of Quansight,

OpenTeams builds a connection to that salesperson so

they can resell it from our other network of suppliers. So,

we're basically a glue for enabling salespeople to never

say no, and enabling a sales channel for talented teams.

 01:19:53 If you look at the consulting companies that are out

there, the big ones, Accenture, Tata, they all become big

sales companies, and developers hate working for them.

What we're trying to do is build a sales network that does

the same thing, while allowing developers to work at

companies that fit their culture, that let them be tailored

to their communities, to be governed by that instead of

just being fitting into some machine that's like a sales

machine. But the sales is critical. You get deals because

you've got a relationship with sales. And so, we let their

salespeople benefit from other salespeople and let them

kind of grow together.

 01:20:30 That's the vision, and we provide all this operational

support. In some sense, it's like I had to learn a ton of

business to support my open-source addiction. How can I

share that knowledge with other people without

recreating the wheel? The other two parts of OpenTeams,

which they use the same brand, OpenTeams Global, its

key is building the open-source professional network,

ospn.org. I want everybody who makes contribution to

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
47

open-source to be able to build a career out of it. I want

them to get the recognition, the credit, enable them to

have their contributions go with them to the dream job

they're looking for. So, ospn.org is basically like a

professional association of open-source contributors. And

then, as a business, it's a payroll HR operations business.

That's the basic piece. And it then does, what I call, long

tail staff augmentation placement. For all of our

companies, they may need to hire someone, they need a

recruiter, they need to work... OpenTeams Global

provides that for people.

 01:21:30 Then the final one, is the one I'm going to be doing

forever, which is OpenTeams Incubator. So, OpenTeams

and Global, I'm looking for leadership to help me run

those companies. But Incubator, I just want to participate

in this forever, and this is basically helping people build

startups with open-source affinity. So, we have an open-

source fund that we manage. We do have a network of

experts, product management experts, marketing experts,

sales experts, to help our product company partners

build businesses better. So, that's Incubator. Anyway,

that's what I'm doing. It's kind of a lot.

Jon Krohn: 01:22:05 It is a lot, that's wild.

Travis Oliphant: 01:22:06 It's a lot. It is wild, but ultimately, I could go on and on

about the partner companies we have, the portfolio

companies, because what I want to have is a portfolio of

wonderful entrepreneurs, engineers, and to be their

biggest cheerleader and be able to help them build their

companies. So, it's kind of what you're seeing as I'm

trying to seed that and get people engaged and help

people work on things. I can't do it all, obviously. I'm just

trying to feel, "Well, what can I share of what I've learned?

Make different mistakes than me. Learn from my

mistakes."

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
48

Jon Krohn: 01:22:33 And how can our listeners get involved with these

communities that you have, these commercial projects

that you have?

Travis Oliphant: 01:22:38 Oh, thank you. Well, OpenTeams in particular has three

communities that it's growing that are business

communities, essentially, and they're different. Depending

on who you are and your skillset, one of these may

resonate. And it's very easy to get involved. Best way to

ping me right now, or to go to our OpenTeams website

and follow the leads to get involved in these communities,

openteams.com.

Jon Krohn: 01:23:01 Openteams.com, yeah.

Travis Oliphant: 01:23:04 Openteams.com is a center point for these communities.

One is what we call the open-source architect network,

OSA community. There's a lot of people. Every successful

engagement with open-source that a company has, is

because they have somebody like this. They have an

architect who knows how to use the product, or the open-

source world, and is aware. So, we're looking for a

community of those people to share practices, to talk to

each other, because you don't know everything. One of

the key pieces that OSA, an open-source architect does, is

know what they know and know where to go get help for

stuff they don't know. So, it's having colleagues and

having a network of people you can lean on to build

solutions for companies.

 01:23:40 So, it's free to join, but there is an application process

because I do look and make sure you have, one, some

experience. You're not just fresh out of school, looking to

get involved with your first open-source project. I want to

see that you've actually done some work in open-source,

you have experience building solutions with it. So, that's

that OSA community and it's a free community and it has

events, a Slack channel, and a place to participate with

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
49

people. The other one is, we call it Engineering Manager

Community. This is to support people who are building

teams at their other companies and understand the

nuance of how do I hire from an open-source community?

How do I get in touch with people? What if I need myself

to build a product using open-source? What is the best

way to do that? How do I avoid creating technical debt in

my company, using open-source? What are the best

practices out there? What are good tools? So, that's the

Engineering Manager Community. It's on LinkedIn, it's

also available from our website.

 01:24:28 And then the new one, which should be available by the

time this airs, but I hope, we're just getting started, it's

our Open-Source Sales Community. So, it's a community

of sales professionals who want to build relationship with

clients, who share in the vision that my view of a

salesperson is, they're an advocate for the customer.

They're basically the customer's connection to the

ecosystem. And to do it well, you really have to get the

trust of your customer, so they trust you, not just to sell

them something that makes your commission, but you

actually have their best interest at heart. And the best

salespeople I've worked with, and I've had a chance to

work with hundreds, that's their mental model.

 01:25:08 They want to help the customer, and that's what we want

to do, is build a group of people who want to help their

customer, who understand that customers, that clients,

that enterprises need open-source to do their job, and

they need to figure out, "Well, how do I connect with the

right people? What are the best practices? What are the

kind of products that I could buy? How does that work?

What is licensing issues?" Just a place to share and talk

with other like-minded professionals. So, those are the

three communities you can get involved with at

OpenTeams. We're excited to grow those communities

and, again, solve the mission of the problem of how to

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
50

help enterprise use open-source better, more efficiently,

more effectively, save the millions of dollars, trillions of

dollars, certainly billions now, trillions later, that could be

instead reinvested into open-source development. That's

what we'd like to see happen.

 01:25:51 So, that's OpenTeams. That's the best way to get involved.

Otherwise, ping me if you're an entrepreneur who wants

to start a company, you want to see if we have... We don't

have deep pockets in the investment dime, we're looking

to raise more money, but we have lots of connections. I do

know a lot of people with deeper pockets and I can point

you to people who might be able to fund your initiative.

Super excited to get involved there. Just ping me on

LinkedIn, Travis Oliphant, Twitter or X, I guess,

teoliphant. There is a Threads, you can also get me there.

I think it's teoliphant again. Just ping me, I'm pretty

responsive usually, unless I'm overloaded, in which case

be patient or ping me again, if you're really urgent. And I

like to talk to people who are serious. I don't have a lot of

time to give, I definitely can give advice, I can point you to

places. I don't have a lot of money and I don't have a lot of

time, so just be aware.

Jon Krohn: 01:26:47 Yeah, and to that also, I know we have several investors

who are listening to our episodes, and so this also sounds

like a potentially great opportunity to be providing capital

into the kinds of projects that are going to have the

biggest impact and therefore the biggest economic

potential returns as well.

Travis Oliphant: 01:27:04 Yeah, correct. If you're an investor looking for where to

have an impact, please talk to me. I probably have

opinions and you might find some of them useful, and I'd

be happy to explain why and perhaps that helps you get a

better return. There is one project, it's still incubating, I

didn't bring it up in my Lex Fridman Podcast

intentionally, because I knew it was still early. It's still

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
51

early, but I am looking for like-minded investors. So, it's

called FairOSS, faiross.org, and you can go there, it's an

incubating project, which means it's hibernating,

actually. I don't have anyone to lead it, and so therefore

it's not making much progress, but we're still holding on

to transactions.

 01:27:46 This is a way to actually create a marketplace for open-

source. I believe it's one mechanism that could actually

solve the problem of connecting the $100 trillion of

investment capital that's globally available. This is money

that people want to put somewhere to make alpha, to

make a return, and they have various horizons of return

profile in that 100 trillion. Some want it in six months,

some are willing to wait 10 years. But then, we also have

open-source innovation, which is underfunded. And my

goal is to create a market connection between the two, so

investors can invest in open-source, but you've got to

make a tie to the economic output for that to work.

 01:28:27 So, FairOSS is really about creating a fair market value

for open-source, a ticker symbol for open-source. And we

do that in a couple of ways. If you're interested, and I

don't want to go into more detail here, because I don't

have the time and it's still hibernating, and I need

funding to make that happen. And it's one of those things

that, you've got to have the right mental model, you have

the right mission and passion. If you're interested in it,

let's talk, because I think we've uncovered an absolute

way to solve this problem in 5 to 10 years. We'll have to

work on it for the next 5 to 10 years, but it can absolutely

transform the world.

Jon Krohn: 01:29:00 Yeah, no doubt.

Travis Oliphant: 01:29:02 That's why I'm excited about it.

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
52

Jon Krohn: 01:29:04 Yeah, I agree, there's a huge opportunity there as well.

Conscious that we are running up to near the end of the

amount of time that I said this interview would take. So,

we had several audience questions. I'm just going to pick

one that I thought was probably the best of all of them, so

apologies to all the other people that had great questions.

Siri, Starkey, Lanam, you had some amazing questions,

but Svetlana Hansen, we're going to get to yours. So,

Svetlana, she's been a long time listener, many years now

of participating in the podcast. So, she's a senior software

engineer creating real-time network engineering solutions

for NASA Spacecraft, which is a pretty cool job. And so,

unsurprising to hear somebody working at the frontier of

space asking a question like, "Where are we going with

the future of scientific computing and Python libraries?"

Travis Oliphant: 01:29:56 Great question. I think I was capturing it when I talked

about, essentially, the compiler framework. I see the

future in something like torch.compile, in Numba, in JAX.

Now, it's not there yet. I wish I could tell you, "Just do

this." I would say though, write your code at a higher

level. If you're writing low level loops, question why? You

should be writing array code. I still think the future is

array or array computing. Write your code with, "Here's

an array, or a data frame, or database computing,"

because then it enables you to then, you're writing code

in a way that can be optimized by compilers in the future.

As opposed to the more detailed you write it, like, "Oh, I'm

writing this loop and grabbing that element of this loop,"

and the more detailed you're doing that, the harder.

Today you can do it. High level array computing, write a

Numba of uthunk. Write a uthunk to do the low level

code you can't just do with operations that exist. You do

that and that will be future-proofed for the future. And it

works today, and in the future, you can take advantage of

new innovations and compilation technology. So, where

we're going, I think is a world where one, people write in a

higher level and the code is faster still. It's going to take

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
53

time to get there still, but I think there's ways to do it

today. And two, I do think generative AI is going to help

us with better human computer interfaces, so that more

people will write even higher level.

 01:31:20 You can just use English language to express your ideas,

and then that'll translate to frameworks that will spell

that out, that then get edited and, depending on where

you are in the cycle of the innovation cycle, you'll either

be operating at the very most exploratory part of writing

human language and interacting with the visuals, or

supporting the technical libraries that emerge from that

exercise and making sure that they keep working, or even

building frameworks at the lowest level. You have a whole

career path, and you can kind of go up and down if you'd

like, but I really see a world where I really want experts to

be able to think about their problem. Python's been

popular because it got out of the way of people, let them

think about their problem instead of their pointer

arithmetic and their semicolon placement. They could

just think about their problem. And that's still needed.

We have scientists solving hard problems, thinking at a

big scale, and I want to support it, and I think you can.

But keep track of the compile world, ask where this run is

happening. Is there an optimizer somewhere that's able to

take your code and then make it faster? And if the answer

is, it's nowhere, then okay, maybe you should be thinking

about ways to do that, or looking for cooperation plows to

do that with.

 01:32:34 And then otherwise, it's still frothy. Interoperability I

think is still... And data. The other thing I would say is,

don't lock your data up in things you don't know. Make

sure you know or a public spec exists for your data. The

future is going to be bad for you if your data is locked

behind a proprietary format that is not available via lots

of people. So, that's the other, I guess, thing I would say.

And you can use a proprietary database, you can use a

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
54

compute engine that you pay money for, that's fine, but

just make sure the data you rely on has some existence in

a public forum.

Jon Krohn: 01:33:14 Very cool. Great answer. And so, you've already filled this

in. Usually, my last question to guests is, how to follow

you or how to reach out to you and you provided that a

few minutes ago, so we're good on that front. And so then,

that means that my final question is my usual

penultimate one, which is: Travis, do you have a book

recommendation for us?

Travis Oliphant: 01:33:34 Book recommendation? I thought about this a little bit.

Maybe a little unusual, but because of my economic

background, it might even make sense. So, it's actually

called Money, Bank Credit, and Economic Cycles by Juan

de Soto. It actually does the best job of explaining what

money is, where it came from, how it exists, and how to

not let it control you. Now, we're all in the same boat.

We're kind of struggling together. In fact, I think one of

the key things is figuring out how do we actually make

money work for all of us? But this will help you

understand the roots, so we make better decisions about

it in the future.

Jon Krohn: 01:34:10 Very cool, Travis. I expected to learn a lot about open-

source from you, and it was awesome to learn so much

about economics as well in today's episode. Thank you so

much, Travis, for taking the time. It truly is an honor to

have you on the show and to be able to speak with you.

Wow. And you exceeded expectations, if anything, such a

joy to speak to you.

Travis Oliphant: 01:34:30 Jon, you're great, I really appreciate being here and I love

talking to folks about open-source, about their problems

they're solving, and I have so much respect for the people

who just use these tools to build so many incredible

things. It's honestly a true honor to be part of the

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
55

community, to feel like a member of that ecosystem. So,

the same reason I got started was my love of science and

sharing, and that's still what drives me today, so I really

appreciate this chance.

Jon Krohn: 01:34:55 Yeah, of course. All right, Travis, thank you so much and

hopefully we'll catch up with you again in the future.

Travis Oliphant: 01:35:01 Looking forward to it, Jon. Take care.

Jon Krohn: 01:35:08 Obviously, Travis is incredibly intelligent and incredibly

driven. I've also got to say that he must be one of the

nicest people I've ever spoken to. What a wonderful

experience it was to meet him. In today's episode, Travis

filled this in on how his journey toward creating NumPy

and SciPy began with his own needs as a biomedical

engineering researcher. How language structures your

thoughts so programming, with its rigorousness,

encourages rigorous problem solving capabilities. How

commercializing open-source is essential for supporting

open-source initiatives and communities. And how the

future of scientific computing will involve major

innovations in compiling interoperability and open-source

data formats.

 01:35:46 As always, you can get all the show notes, including the

transcript for this episode, the video recording, any

materials mentioned on the show, the URLs for Travis'

social media profiles as well as my own, at

superdatascience.com/765. And if you'd like to engage

with me in person, as opposed to just through social

media, I'd love to meet you in real life at the Open Data

Science Conference, ODSC East, which will be held in

Boston from April 25th to 25th. I'll be doing two half-day

tutorials, one will introduce deep learning with hands-on

demos in PyTorch and TensorFlow. And the other will be

on fine-tuning, deploying, and commercializing with large

language models, including GPT4 and Gemini. In addition

http://www.superdatascience.com/765

Show Notes: http://www.superdatascience.com/765
56

to these two formal events, I'll also just be hanging

around and grabbing beers and chatting with folks, it'd be

so fun to see you there.

 01:36:32 Alrighty, thanks to my colleagues at Nebula for

supporting me while I create content like this Super Data

Science episode for you. And thanks, of course, to Ivana,

Mario, Natalie, Serg, Sylvia, Zara, and Kirill on the Super

Data Science team for producing another jaw dropping

episode for us today. For enabling that super team to

create this free podcast for you, we are grateful to our

sponsors, and you can support this show by checking out

our sponsors' links, which are in the show notes. And if

you would like to sponsor the podcast yourself, you can

get the details on how by making your way to

jonkrohn.com/podcast.

 01:37:04 Otherwise, please share, review, subscribe and all that

good stuff, but most importantly, just keep on tuning in.

I'm so grateful to have you listening and I hope I can

continue to make episodes you love for years and years to

come. Until next time, keep on rocking it out there and

I'm looking forward to enjoying another round of the

Super Data Science Podcast with you very soon.

http://www.superdatascience.com/765

