

Show Notes: http://www.superdatascience.com/771
1

SDS PODCAST

EPISODE 771:

GRADIENT

BOOSTING:

XGBOOST,

LIGHTGBM AND

CATBOOST, WITH

KIRILL EREMENKO

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
2

Jon Krohn: 00:00:00 This is episode number 771 with Kirill Eremenko, the

founder and CEO of SuperDataScience. Today's episode is

brought to you by Ready Tensor, where innovation meets

reproducibility, and by Data Universe, the out-of-this-

world data conference.

 00:00:20 Welcome to the SuperDataScience Podcast, the most

listened to podcast in the data science industry. Each

week we bring you inspiring people and ideas to help you

build a successful career in data science. I'm your host,

Jon Krohn. Thanks for joining me today, and now let's

make the complex simple.

 00:00:51 Welcome back to the SuperDataScience Podcast. Today

we've got another special episode with our most special of

special guests, Mr. Kirill Eremenko. If you don't already

know him, Kirill is founder and CEO of

SuperDataScience, an e-learning platform that is the

namesake of this very podcast. He founded the

SuperDataScience podcast in 2016 and hosted the show

until he passed me the reigns a little over three years ago.

Kirill has reached more than 2.7 million students through

the courses he's published on Udemy, making him

Udemy's most popular data science instructor of all time.

 00:01:26 Today's episode is a highly technical one focused

specifically on Gradient Boosting methods. I expect this

episode will be of interest primarily to hands-on

practitioners like data scientists, software developers, and

machine learning engineers. In this episode, Kirill details

decision trees, how decision trees are ensembled into

random forests via bootstrap aggregation, how the

AdaBoost algorithm form a bridge from random forests to

Gradient Boosting, how Gradient Boosting works for both

regression and classification tasks. He fills us in on all

three of the most popular Gradient Boosting approaches,

XGBoost, LightGBM, and CatBoost, as well as when you

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
3

should choose them. All right, you ready for this

extremely illuminating episode? Let's go.

 00:02:14 Kirill, welcome back to the SuperDataScience Podcast. We

are all so delighted to have you back yet again for another

technical episode this time on Gradient Boosting. You

were here back in January for a technical intro to large

language models. Then you came back in February to

build deeper and dig into encoder decoder transformers,

so like a specialized further deep dive. It was volume two

of this super popular January episode, one of our most

popular episodes ever, and then now you're back for

Gradient Boosting, which is quite different from LLMs,

but also super valuable, super powerful. It's going to be

an awesome episode. Thank you for coming on.

Kirill Eremenko: 00:03:01 Thanks for having me, Jon. Very exciting. Probably I

should say that for the benefit of our listeners that even

though the space between the episodes is only about a

month and a half or so, the knowledge I'll be sharing

today comes from a course that we've just released, but

we started this course back in end of 2022. Then we put a

big pause on it, so it's not like I just put together

something in a month on Gradient Boosting and I'm back

here. No, it actually took a few months of research back

in 2022 and then finalizing it in the past month to get it

to where it is. I'm very excited now to come and share the

knowledge we've learned creating the course for the

benefit of the podcast listeners as well.

Jon Krohn: 00:03:48 Nice. When you say we, you mean Hadelin right? Hadelin

de Ponteves is your co-instructor on the course?

Kirill Eremenko: 00:03:55 No, it's just me.

Jon Krohn: 00:03:57 Oh.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
4

Kirill Eremenko: 00:03:57 I'm joking. I'm joking, but you know how kings say we? I

don't know, the royal we, yeah, yeah. No, of course. Yes.

Hadelin and I, we've just published a course. It's called

Machine Learning Level 2 because we have a Machine

Learning 1 for complete beginners. Then Machine

Learning Level 2 is for practitioners who are intermediate

and want to go advanced, and it's all about Gradient

Boosting. The reason for that is Gradient Boosting is, and

the underlying techniques, specifically XGBoost,

LightGBM, and CatBoost are by far some of the most

used and reliably used modeling techniques in industry

and in business.

 00:04:39 If you're not doing deep learning, which is more for

mostly, in my understanding is used for new tasks, novel

problems, research based things. Of course, it has its

applications in industry as well, but if you want just a

reliable solution to a classification or aggression problem,

XGBoost is one of the... XGBoost, LightGBM, or CatBoost

are some of the go-to solutions. We want to equip our

students with the best tools to make them successful in

their careers. Doing fun stuff in machine learning AI is

sometimes different to what you need to get the job done,

and Gradient Boosting often is the solution to get the job

done.

Jon Krohn: 00:05:20 Yeah, that reminds me that you and Hadelin were back

on the show in episode number 649 for an intro to

machine learning to your level one course as well as just

a general Machine Learning 101. Yeah, this is now your

fourth appearance in just a little over a year. That episode

actually also, by the way, was the 10th most popular

episode of 2023. We recently-

Kirill Eremenko: 00:05:46 Oh, yeah, I just listened to your podcast on that today in

the car. Yeah, it was funny. I was listening to it. I was

like, you mentioned the episode. I didn't realize you're

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
5

going from lowest to highest top 10, and I thought, "Oh,

we were number one in 2023, but we were number ten."

Jon Krohn: 00:06:01 You barely squeaked into the top 10.

Kirill Eremenko: 00:06:05 I know, I know. Anyway, so yeah, that was about a year

ago. That was for Machine Learning Level 1, and now

we've had lots of people asking for Machine Learning

Level 2. We've been delaying it because of other projects

we've been working on, but now we finally released it. It's

just gone live, very excited about, it's six and a half hour

course. Of course, we'll go into a lot of concepts in this

podcast, but right away I wanted to say if somebody

wants to check it out, you can find it at

superdatascience.com/level2. You'll need to subscribe to

SuperDataScience membership. You'll get access to that

course, which is exclusive to SuperDataScience, not

available anywhere else. Plus you'll get access to the

Large Language Models A-Z course, which is also

exclusive to SuperDataScience, and all of our other 30

plus courses, our community, our workshops at Live Labs

that we're doing twice a month now, career sessions, et

cetera. Worth checking it out at

superdatascience.com/level2.

Jon Krohn: 00:06:56 I recently organically noticed how many live sessions

you're having in there, very cool. It sounds like the

community is really starting to flourish at

superdatascience.com. That's cool. I also wanted to add,

earlier you were talking about deep learning versus

Gradient Boosting or decision trees in general and why

you might use one or the other. I think one of the easiest

ways, conceptually for me, is that when you are dealing

with very large data inputs like an image, or a video, or

natural language, that's where deep learning, including

deep learning transformer architectures tends to be very

effective. But when you're dealing with things like tabular

data that you could put into a spreadsheet, that's where

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
6

the kind of Gradient Boosting that we're talking about

today tends to be the leading approach.

Kirill Eremenko: 00:07:51 Absolutely. I was actually looking into this yesterday to

see the differences, and you're absolutely right. Deep

learning and [inaudible 00:08:04] related things are very

powerful when you have additional structure to the data,

whether it's like an image and so on, or you have tabular

data with additional structure, you have a time series

behind it with some specifics that are not just captured or

not easily captured in normal tabular data. If you have

ordinary, normal tabular data, which happens to be the

most common type of data that businesses aggregate

consciously and process these days, whether it's time

sheets or maintenance or medical patient data, whatever,

it's mostly tabular data.

 00:08:42 That's what you usually find in business and industry

without any additional pattern to it that deep learning

can catch on and take advantage of. Then you can still

apply deep learning, but XGBoost is just going to be

Gradient Boosting models is going to be faster, more

reliable, easier, quick win, and it's just a more standard

approach to these kinds of problems. You don't have to

reinvent the wheel, just apply it and off you go, some fine-

tuning and you're done.

Jon Krohn: 00:09:15 Exactamundo, amigo.

Kirill Eremenko: 00:09:17 Yep. Yep. Okay. Shall we start? We've got some exciting

topics coming up.

Jon Krohn: 00:09:22 Yeah, yeah, let's rock and roll.

Kirill Eremenko: 00:09:23 Okay, cool. Cool. The first thing we're going to talk about

is ensembling methods in general. What are ensembling

methods and how do they work? An ensembling method,

first thing that you need is typically ensembling methods

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
7

they... It's ensembling methods when you aggregate lots

of models to produce one model. It's like one model that

combines lots of models, and there's two main ways of

combining models. But first, before we go to the two main

ways of combining models, we need to realize that

ensembling methods rely quite heavily on weak learners.

They don't need the individual models that you're

ensembling to be very smart or sophisticated. Typically,

it's something simple. It doesn't have to be a decision

tree, but in most cases, people choose decision trees

because they A, are weak learners. B, they're quick

learners, and C, they capture non-linear relationships.

 00:10:25 Having said that, you can use a hundred linear

regressions to create an ensemble of linear regressions if

your specific use case requires that, but we're not going

to go into custom use cases like that. We're going to look

at the typical approach, and the typical approach is like

take decision trees, put them together and get the

ensemble. In case somebody needs a quick refresher or

somebody's brand new to this, a refresher on decision

trees. Basically just imagine like yes, no splits, right? Yes,

if- else conditions. At the start you'll be like, you have all

this data. Let's say you have a thousand customers and

you're modeling how much future customers will spend

on your online store where you're selling candles, for

example. I was thinking, what would we be selling?

Candles. I don't know, some food supplement or

something like that.

Jon Krohn: 00:11:20 Yeah, I don't know. Candles is such a random example.

Do you like rooms that smell nice, Kirill? Is that-

Kirill Eremenko: 00:11:25 I do like rooms that smell nice, but I've been recently

learning that candles are not regulated. I don't know

about the US, but in Australia, they don't have standards,

so you got to be careful because the stuff they put in

might not be healthy for you.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
8

Jon Krohn: 00:11:37 One in every hundred is actually a stick of dynamite and

you don't know.

Kirill Eremenko: 00:11:42 That's too funny. Oh, okay. All right. Let's say you have a

thousand customers and you want to predict based on

those customers, the new customers are coming into your

store in the future, how much they'll spend in your store.

It's a regression type of problem, and what you will do is

you'll model your existing customers with a decision tree,

and let's say the decision tree splits out the following, the

structure. At the top it'll be a split on let's say their

estimated income. You have a variable of their estimated

income, you've estimated it somehow, it's in your input

data, and you're saying... The decision tree will say at the

top, the first split is "Is there estimated income less than

$47,000 per year or not?" If it's less than $47,000 go left.

That's a yes. Go, right if it's a no. In case, and then you

just visualize this tree, it's like a box. It doesn't look like a

tree. It's like a box. Yes, no, then it's an if-else condition.

If you-

Jon Krohn: 00:12:41 It's like an upside down tree. It's a tree upside down.

Kirill Eremenko: 00:12:43 Yeah, kind of it grows. Yeah, it grows upside down. That's

right. It's right. At the top is the beginning of the tree. Is it

called the root of the tree?

Jon Krohn: 00:12:51 Yeah, the root of the tree.

Kirill Eremenko: 00:12:52 Yeah. Okay. The root of the upside down tree. Then you

go left if they do earn less than $47,000 per year, then

you have another split, so you have another branching of

the tree, and then let's say the condition tree from

training has decided that the condition should be, "Is

there age less than 45?" If yes, then go down to the left

and we're going to keep it a simple, relatively shallow

decision tree, and that's where we'll end for that branch,

and it'll be, it's called a terminal leaf.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
9

 00:13:24 That terminal leaf will have a value. What that value is

that during training, out of all of the thousand customers

that you have, all of the ones that fell into that branch

that had income of less than $47,000 and age less than

45, it'll take the average. For regression problem, it just

takes the average of the customers that they spend there,

and let's say it's $23. On the other hand, if the customer

earns less than $47,000, but their age is not less than 45,

so you go left first and then you go right, then the average

of those customers was $15. Then let's go back to the top.

If the customer doesn't earn less than $47,000, so they

earn $47,000 or more, then at the very beginning you

would've gone, right? There, let's say there could be a

terminal leaf right there. It doesn't have to be symmetric.

We'll talk about symmetric trees further down in this

podcast.

 00:14:17 There could be another leaf there. But there, let's say

there's another split, and it's asking, "Is that customer

signed up to your loyalty program or not?" It's a

categorical variable. If they are signed up, it's a yes, then

you go left down the tree, and because they're signed up

to a loyalty program, their income is over $47,000, the

average of those customers that ended up in that bucket

is quite high. It's, let's say, $212 that they spend on your

candles per month or whatever it is that you're modeling.

But if they are not signed up to your loyalty programs,

you would've gone right in that last branch. Let's say the

answer is there is 48 in the terminal leaf. That's the

average.

 00:14:56 You get this decision tree that was built through training,

and now any new customer that comes into your

company, you can, based on these variables, you can

model them and you can see, "Oh, is their income less

than $47,000 or not," go left or right. Then if let's say they

go left, you're like, "Okay, is their age less than 45 or

not?" If their age is 45 or more, then you go, right, and

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
10

then you know, "Oh, okay, most likely they will spend on

my candles in next month $15." Then you can make

business decisions from that. That's like a simple

refresher on how decision trees work. As you can see, it's

quite straightforward and they can capture non-linearity

because of these if-else splits.

Jon Krohn: 00:15:39 Research projects in machine learning and data science

are becoming increasingly complex and reproducibility is

a major concern. Enter Ready Tensor, a groundbreaking

platform developed specifically to meet the needs of AI

researchers. With Ready Tensor, you gain more than just

scalable computing storage model and data versioning

and automated experiment tracking. You also get

advanced collaboration tools to share your research

conveniently and securely with other researchers and the

community. See why top AI researchers are joining Ready

Tensor, a platform where research innovation meets

reproducibility. Discover more at readytensor.ai, that's

readytensor.ai.

 00:16:20 All right, so to recap back for the audience, this decision

tree concept, definitely extremely easy to understand with

a visual.

Kirill Eremenko: 00:16:29 Yeah, for sure.

Jon Krohn: 00:16:30 But it's the idea, yeah, the base of a tree, which for some

reason... I guess because it ends up being on the top of

the diagram because we read from top to bottom to

bottom, so it makes sense to have the flow be from top to

bottom, but that means that the tree shape is upside

down. The base of the tree or the root of the tree is the

starting point, and you have your first split right at the

very top. Typically, I think with most of these

approaches... I'm not the expert. I think you're much

more expert than I am, but typically that first split is it is

often the most important split. It's the split that'll get you

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
11

your biggest delta in whatever outcome. In your case, is

somebody likely to spend a lot of money on candles on my

website or not? That first split will often be a variable

amongst all the variables available that is going to get the

biggest, it's going to have the biggest relationship.

Kirill Eremenko: 00:17:21 Yeah.

Jon Krohn: 00:17:22 In this case, in your example, it was income, which

makes a lot of sense. People with more income are more

likely to spend money on candles on your website. Then

from there, you go two ways on this path tree of possible

decisions. I guess you can also imagine it like going on a

journey. You are walking along a path and the path splits

in two, all of the people with high incomes go one way. All

the people with low incomes go the other way. Then once

you get a little bit further along the path, the people with

the high incomes, they encounter another split in the

road. This time it's split on age, and so all the young-

Kirill Eremenko: 00:18:02 No, sorry, sorry. It's not a... That's for the higher earners.

For the higher earners, it's loyalty program.

Jon Krohn: 00:18:09 Oh, right, right, right. Sorry. Yeah, I messed up. But for

the visual analogy, the higher earners, they're going along

their path in the woods and then it splits again a little

while later. The ones, the higher earners on the loyalty

program go one way. The higher earners that aren't go the

other way and the same thing happens on the other side,

but like you said, it doesn't necessarily need to be

symmetric. It doesn't need to be the same variables that

you're splitting on. The low income earners as they walk

along their path, when they encounter a split, they have

to split on their age instead of on the loyalty program.

Yeah, I've never thought of it that way as the path, but I

think that's easy... At least in my head as I'm speaking,

it's quite an easy thing just to imagine that you're on this

journey.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
12

Kirill Eremenko: 00:18:55 I love it. Yeah. That's good for visualizing training, exactly

how it would happen in training. Then a new candidate

that comes onto your website would have to go down this

path and look at the signs. I think we should rename

decision trees to decision paths going forward. It's

brilliant, seriously.

Jon Krohn: 00:19:12 When you get to the end, so in this case, so you could

have... It's a hyper parameter in your model when you set

it up. You could have lots of levels, lots of bifurcations in

the path. It's always two, by the way. You never get to a

point on this journey and there's three possible paths. It's

always two.

Kirill Eremenko: 00:19:31 It's always if-else.

Jon Krohn: 00:19:32 Always if-else, like you said. When you get to the end of

that journey, which is a leaf node, so again, if you

imagine the terminal node, leaf node, if you imagine-

Kirill Eremenko: 00:19:42 Leaf node.

Jon Krohn: 00:19:44 A terminal leaf node, if you imagine that the tree was

upside down, these would be a whole bunch of leaves

emanating out from the base of the tree. It's like holding a

Christmas tree upside down after you've already... It's

Christmas is over and now you're taking your Christmas

tree out of the house. That's what a decision tree looks

like. Yeah, you're holding it from the base up by your

head. When you get to that terminal leaf node on our

path analogy, then you could imagine that you're asked at

that terminal point, "How much did you spend on candles

at the website?" Then you can average all the people who

got to that terminal node. You have different values.

Yours, your high income earners who signed up to the

loyalty program, they had an average of $212 spent.

Kirill Eremenko: 00:20:36 That's right.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
13

Jon Krohn: 00:20:38 And so on. We might be belaboring what decision trees

are now to people who were already familiar with them,

but for people who weren't, hopefully this discussion has

been-

Kirill Eremenko: 00:20:49 Hopefully the people who were already familiar with them,

forgive us for this slight easy concept detour, because

that was important for everybody to get on the same page.

From now on, everything's going to be a lot of fun, and

we're going to dive into more advanced topics. Right away,

I wanted to also say that decision trees can be used for

regression as we just discussed, and they can be used for

reclassification. As you can imagine, reclassification is

even easier. You go down these paths, as Jon was saying,

during training, customers go. Then there's a yes, no

question, "Did this customer churn or did this customer

not churn? Does this patient have cancer? This patient

does not have cancer?" Based on what you get through

training, your final decision tree will either assign, you

can set it up to assign a label. As soon as a new

candidate goes through the tree and gets to the end, you

can assign a label cancer or no cancer, or in case of

classification problems, you can do that, or you can

assign a probability if you like, 70%, 20%, whatever else.

 00:21:57 It's two kind of ways to set it up for classification

problems. That was a basic decision tree. Let's get to the

fun stuff, ensemble models. Ensemble models combine

weak learners. As we established decision trees are great

candidates for weak learners. There's two main ways of

building ensembles. One is called bagging, the other one

is called boosting. We'll start with bagging. Bagging is a

cool term because it's actually short for bootstrap

aggregating. It's just one of those times in life when the

real technical term, bootstrap aggregating, actually

abbreviates to a cool world bagging, which properly

describes the concept.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
14

 00:22:35 I was reading about bootstrapping yesterday and really

interesting etymology of this word. Bootstrapping comes

from some boots, especially cowboy boots, on the back of

the boots, they have these straps. I don't know what

they're for, maybe hanging them up or something like

that. You know what they're for?

Jon Krohn: 00:22:53 No idea.

Kirill Eremenko: 00:22:54 Okay, so bootstrapping is kind of like, let's say you have a

fence in front of you and you need to get over the fence

and nobody's around to help you. Well, the idea of

bootstrapping is you pick yourself up by these bootstraps

and you throw yourself over the fence, something that's

physically impossible. You don't have... It's just weird,

you can't pick yourself up. It just doesn't make sense. But

that's where the term comes from. Visualize that jump,

picking yourself up by the bootstraps. In terms of

statistics, there's how it's applied. Why is it called

bootstrap aggregating?

 00:23:26 Well, the whole concept of these bagging type of models,

let's say you have a data set of a thousand observations,

and in statistics, you don't want to... Let's say you don't

know the underlying distribution of this data set, or you

don't want to make assumptions about this underlying

distribution of this data set, and you want to make some

inferences from it. What the process of bootstrapping is in

statistics is taking this thousand observation dataset and

taking samples out of it. You take, just imagine you put

all of this thousand dataset, a thousand samples into a

bag, and you pick out a thousand with replacement. You

pick out a sample, you note it down which one you picked

out, you picked out, I don't know, sample number 747.

Then you put it back down, back into the bag, then you

pick another sample and so on.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
15

 00:24:15 You pick out a thousand samples, but because you're

doing it with replacement, that means that you might,

and you likely will pick out same samples several times

and some samples will be missed. That way you've just

now created, and from your original sample, you've

created a new sample of a thousand that is different to

the original, but it consists of the same total observations.

You do that multiple times. You bootstrap, let's say a

hundred times, now you have a hundred samples, and

now you can make certain inferences like apply... I don't

know. The central limit theorem to that, or the law of

large numbers, things like that, just do statistical

inferences from that. Effectively why it's called

bootstrapping is because you've done the impossible. You

only had one dataset of a thousand samples, and then

you've lifted yourself up by these bootstraps. Nobody was

there to help you. You didn't make any assumptions

about underlying data, and yet you created a hundred

samples, which are all different, and now you can make

statistical inferences. That's called bootstrapping.

Jon Krohn: 00:25:16 Kirill, I looked up why boots have bootstraps. It's pretty

obvious, they're for pulling on the boots.

Kirill Eremenko: 00:25:24 Oh. We're idiots. Yes, of course. Oh, I love it. Yeah, that's

good. Yeah, to help you put them on. Yeah, was my

description of bootstrapping, correct for statistics?

Jon Krohn: 00:25:37 Oh, it was unbelievable. I feel like there's almost even no

point in me saying it back to you in my own words

because it was beautiful.

Kirill Eremenko: 00:25:43 Awesome. Thank you.

Jon Krohn: 00:25:44 Bootstrap aggregation. Yeah, picking yourself up by your

own bootstraps. That's a common expression. I think it's

been around for a very long time. But yeah, just this idea

that you're without, you're not really simulating new data.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
16

You're not simulating new individual samples. You're not

needing to go out and collect new data. You are

bootstrapping based on what you have, and you're

creating a whole bunch of samples with just what you

have, so it's bootstrapping.

Kirill Eremenko: 00:26:10 That's right. Bootstrap aggregation is the process of

bootstrapping many times and then doing some analysis

and aggregating. In the case of ensemble methods, that's

exactly what we're going to be talking about. We're going

to be doing bootstrap aggregating as we can see just now.

But I just wanted to make a quick comment that the term

bagging, like the abbreviation bagging, makes perfect

sense because you're putting these samples into the bag

and then you're pulling them out of the bag. It's a good

mnemonic to remember what bootstrap aggregating is.

 00:26:42 Let's talk about ensemble methods. We are already into

this first one called bootstrap bagging, short for bootstrap

aggregating. Let's talk about an example of a bagging

method. That one to many of the listeners will be familiar.

It's called random forest. What you basically do with

random forest is you do bootstrap aggregating. You'd say

you have a thousand samples. You want to create a

random forest, which is an ensemble method, combining

decision trees. Let's say you want to have a hundred

decision trees in this random forest. You do bootstrap

aggregating. You create a hundred different samples

based, each one has a thousand observations based on

your original one, just the way we just described, using

that bootstrapping method. Then you build a decision

tree from each one of these samples. Each one of the

decision trees will see a slightly altered version of the

original data.

 00:27:34 Therefore, each one of these decision trees, even though

they might have the same, they will have the same hyper

parameters. Their tree structure and the breaks and the

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
17

splits in the tree will be different. Then you get the results

of each decision tree and that the final model, the random

forest prediction, will be the average for... Basically will be

the average of these decision trees. Let's say you're

talking about this candle sales example and how much

each customer will spend. Instead of building one

decision tree and predicting based on that, what you can

do is do this bootstrapping process, build a hundred

decision trees, each one with slightly different underlying

data. Then see, let's say for a new customer that comes

through into your store, you see what each model will

predict.

 00:28:26 Some models will predict $23, some models will predict

$15, some $212, et cetera, et cetera, et cetera, or other

values because each tree is built differently. Some models

might predict $78. Some models predict $300 depending

on how the tree was built. Then you'll just take the

average. You'll say, "Okay, so this customer came into the

shop." These hundred decision trees make their

predictions. The average of what the random forest

predicts is $51 and 23 cents. That will be your final

output from the random forest. That's what you're going

to use.

Jon Krohn: 00:29:03 This episode is brought to you by Data Universe coming

to New York's North Javits Center on April 10th and 11th.

I myself will be at Data Universe providing a hands-on

generative AI tutorial. But the conference has something

for everyone. Data Universe brings it all together, helping

you find clarity in the chaos of today's data and AI

revolution. Uncover the leading strategies for AI

transformation and the cutting edge technologies,

reshaping business and society today, data professionals,

business people, and ecosystem partners, regardless of

where you're at in your journey, there's outstanding

content and connections you won't want to miss out on at

Data Universe. Learn more at datauniverse2024.com.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
18

 00:29:42 Yeah, random forests are amazing, powerful models.

What you're going to get into next with Gradient Boosting,

it makes them even more powerful, but random forests on

their own, they make that decision tree idea that we

walked through in detail. The idea of going down those

paths, or the upside down Christmas tree, when you only

have one of those upside down Christmas trees, it's

relatively...

Kirill Eremenko: 00:30:04 Terrible.

Jon Krohn: 00:30:04 Limited, yeah. The advantage of that kind of single

decision tree is that it's very easy to understand. You can

see it, you can see each of the bifurcations in the path,

and you have very clear end values. But with a random

forest, when you bootstrap aggregate a whole bunch of

different samples, and then maybe randomly turn off

some of the input variables for some of those random

forests optionally, you end up with a super powerful

machine learning model already. Random forests are

amazing. They'll often get you near the top possible

performance on tabular datasets, like we talked about at

the beginning of this episode already. Random forests are

super powerful, but the boosting now that we're going to

get into, that you're going to get into, is even more

powerful. Where random forests fall down, boosting

managed to fill in the gaps, and do even better.

Kirill Eremenko: 00:31:04 Yeah, absolutely. Before we get to boosting, I wanted to

give a real-world analogy for random forests that really

helped me understand this concept. Have you ever been

to a fair, Jon?

Jon Krohn: 00:31:17 Sure, yeah.

Kirill Eremenko: 00:31:19 You go to a fair and there's rides, and roller coasters, and

other little games that you play, and so on. One of the

games that you sometimes see at the fair is this big jar

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
19

with lots of jelly beans inside, thousands, and you need to

guess what the number of jelly beans is in there. You've

seen that one?

Jon Krohn: 00:31:37 I've seen that one. When I was a kid, actually, it wasn't at

a fair, but it was at a friend's house. It was his birthday

party, and there were 20 kids, and they had this game. I

might've been maybe 10 years old, and I guessed the

number of jelly beans on the dot.

Kirill Eremenko: 00:31:50 Wow, very good. Very good. Basically, the principle is the

person who gets closest wins the prize, or maybe some

rules might be different, but let's say you might have to

guess on the dot, like Jon did, or the person who guesses

closest, or within a certain range.

Jon Krohn: 00:32:11 You just have to get closest, I think.

Kirill Eremenko: 00:32:14 What the most optimal strategy for this is, you combine a

ensemble of weak learners, and because humans are not

designed to predict the number of jelly beans inside a jar,

where there's thousands of them, or hundreds-

Jon Krohn: 00:32:31 Speak for yourself.

Kirill Eremenko: 00:32:33 You seem to be very good at it. Humans, apart from Jon,

are not designed for doing this.

Jon Krohn: 00:32:38 I'm batting one for one on jelly bean guessing. I'm never

going to do it again.

Kirill Eremenko: 00:32:43 Keep it high. Keep your stats high. Humans are bad at

that. Humans are perfect weak learners. What you need

to do is, you get a notepad and a pen, and every time

somebody comes to the stand and makes a guess to

whoever owns this challenge, when they walk away, you

ask them, "Hey, what was your guess?" You just write it

down, and then the next person comes and guesses, the

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
20

owner or whatever tells them if they're close or not.

Doesn't even tell them, just writes it down, writes the

contact detail, to contact them if they're a winner. Then

they walk away, and they walk past you, and you ask

them again, "What did you guess?" You ask everybody

who made a guess what they guessed.

 00:33:22 Unless there's some sort of trickery going on, like it's a

hollow in the middle type of jar or something like that, if

there's no trickery going on, you'll get hundreds of these

guesses which are a bit high, a bit low, a bit high, a bit

low, and so on and so on. But then you take the average

of them, like a random forest does, you created a own

ensemble. You take the average, and the average will be

the best guess. The average, in many cases, will be the

closest to the actual amount, because people have their

own differences in their thinking, in their perception and

so on. Some will guess higher, some will guess lower, but

on average, you'll be very close. If, the next time you're at

a fair, you see one of those, give that a try. In general, in

my view, that's a great analogy of what a random forest

does.

Jon Krohn: 00:34:06 That was a really nice analogy. Another one that is worth

mentioning quickly is just that visual of this random

forest. The clue of what's happening there is right in the

name. You take a whole bunch of decision trees, and

trees make up a forest. Each of those trees in the forest is

slightly random, a random forest, in that there are

different bootstrap aggregated data sets that make up

each of the individual trees, so there's randomness there.

As I mentioned earlier, there's also randomness around,

sometimes optionally, what input variables are being

considered, what independent variables are being

considered.

Kirill Eremenko: 00:34:47 Yes, the features.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
21

Jon Krohn: 00:34:48 The features, yeah.

Kirill Eremenko: 00:34:49 The feature selection. There's selection by bootstrapping,

the underlying rows are different. But also, you could set

a parameter saying that, "The trees don't see all of the

features, they only see 80% of the features randomly."

Each tree not only sees different rows to other trees, but

also sees different columns, and that's a great way of

combating over-fitting.

Jon Krohn: 00:35:15 Going back to your earlier example of the single decision

tree, where three of the variables that you got into were

income, age, and whether they were signed up to the

loyalty program or not, in a random forest, the first tree in

the random forest might only have income and age. Then

randomly, the second tree has age and loyalty program,

and so on. You get slightly different answers every time.

Kirill Eremenko: 00:35:43 Yeah, and it's actually a good point to say that trees can

reuse variables. If it used income at the top and then it

used loyalty program in the next split, and again, can use

income. It is not limited to using a feature only once. It

can be done as well. There's other hyperparameters, like

the depth of the tree. You could set the maximum depth

to eight or whatever. There's a hyperparameter for a

random forest. You can set how main trees, 100, 1,000,

how many trees you want, et cetera. We'll get a bit into

that further down. I feel it's important to also mention

quickly, on random forests, you can also use it for

classifications. What we just discussed was regression.

 00:36:20 Just keep in mind, throughout this podcast, we'll be

talking about regression classification from time to time.

Those are two big separate types of problems that are

solved with all the methods, what we're discussing. You

can also use it for classification. A random forest for

classification would be, rather than taking the average of

all of the trees that you have, you would use it as a voting

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
22

system. It's like a democracy, a democracy of random

trees. Basically, the trees make their predictions, will this

customer churn? Will this customer not churn? For a

medical data set, does this patient have cancer or not?

 00:36:53 Then you have these predictions from all the trees.

Basically, you look at it like a vote. Out of 172 trees voted

that this customer does not have cancer, 28 voted that

they do have cancer. You could say that's a no, or if you

want to be more cautious to avoid what is going to be a

type two type of error, where you're saying they don't have

cancer but they actually do, you might say, your

threshold is not 50/50, your threshold is 75/25. In this

case you'll say, yes, they have cancer, just to make sure

and double check. Basically, you'd use it as a voting

system.

Jon Krohn: 00:37:30 Yep.

Kirill Eremenko: 00:37:30 Cool. All right, let's move on to boosting, so excited. All of

that was up to... which year was that? Up to 1995, and

1995 was the first year when boosting was introduced

conceptually. It didn't become very popular as this

random forest until around 2016, when XGBoost came

out, and we'll get to that further down. 2014, that's when

XGBoost came out. Random forest was dominating, and

for example, Kaggle competitions, a lot of people were

using random forest all the way up to 2014, 2015.

Whereas boosting slowly started growing, got developed

and started growing from 1995. 1995 was when two

authors, Yoav Freund and Robert E. Schapire, I'm not

sure if I'm pronouncing that correct, Schapire, from AT&T

Labs, they published a paper. Actually, no, they didn't

publish a paper. They developed the concept of Gradient

Boosting and then later, they published their paper in

1999. Sorry, not Gradient Boosting, they didn't develop

Gradient Boosting. They developed the concept of

AdaBoost, so just boosting. The method, the model that

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
23

we're going to talk about is called AdaBoost. Just keep in

mind, very important, AdaBoost is not a Gradient

Boosting model.

Jon Krohn: 00:38:53 The Ada there stands for adaptive.

Kirill Eremenko: 00:38:55 Exactly. Thanks Jon. It's adaptive boosting. They got the

prestigious Gödel Prize in 2003 for their work. It is for

theoretical computer science. It's like the Nobel Prize, I

guess, or a Nobel... actually, Gödel himself got the

Einstein Prize. A Gödel Prize is a prize, but it's tiny. For

somebody in this space, it wouldn't be a lot of money. I

believe it's $5,000, so it's not a huge amount of money,

but at the same time, it's more prestige. They got this

prize in 2003.

 00:39:29 Okay, let's talk about AdaBoost and how it works.

AdaBoost was the first boosting method, and their

thinking was, "All right, why are we doing these random

forests? Why don't we adjust the approach?" In AdaBoost,

what you do is, you take your 1,000 samples from your

candle store, and you're going to train an ensemble,

again, of weak learners. They're going to be decision trees.

First decision tree, you train it on the full sample that you

have. No bootstrapping, you just train it on the 1,000

people that you have, 1,000 observations that you have.

Then you look at, how well did this model perform? On

which observations did it do well? On which ones did it

not do well? Some observations, the errors will be low. On

some observations, the errors will be high.

 00:40:26 What you do is, you take the observations that had high

errors, and you assign them a weight, a higher weight.

The lower the error, the lower the weight, the higher the

error, the higher the weight. Now, you start doing

bootstrapping with the same data set. You take the 1,000

samples, you put them in a bag, you're going to pull out

of the bag with replacement, so bootstrapping, but the

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
24

way this bag is created is, the observations that had

higher errors will have higher weights in this bag. This is

a very simplified explanation. We're not going to go into

too much detail in this, but just think about it like you

have this bootstrapping method, but the observations

that initially, in the first prediction had higher errors,

they'll have a higher chance of getting picked out of the

back.

 00:41:11 Now, you bootstrap this new data set, or again, 1,000

observations, but it's geared towards the observations

that you didn't predict that well in the first instance. Now,

you make a second decision tree to predict the results for

this new bootstrap data set, and again, you get some of

them that you predicted well, some of them that you

predicted not so well. Again, you assign weights based on

that. Now, you take the original 1,000 and you create

another bootstrap, but you apply those weights that you

had just assigned from the second result, and so on.

 00:41:49 Every time you're bootstrapping, you are adjusting to

favor the observations that you didn't predict well in the

previous iteration. You keep doing that. Let's say you

have 100 decision trees, so you do that every time. In

addition to that, you also look at how well each decision

tree performed overall. Each decision tree, you assign it a

score based on how well it predicted overall. What's its

overall error? Then in the end, you will have 100 decision

trees. Each one is focused on predicting better the

samples that were miss... by the way, AdaBoost was

originally developed for classification, so it'll focus on

classifying better the samples that were misclassified by

the previous decision tree, and that is done through the

weighted bootstrapping process. Also, each one of the

decision trees will have a score based on how well it

performed overall in its job.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
25

 00:42:48 The final model results, rather than like in a random

forest, where we took the average of all of these values, or

in the case of a classification, we took the votes of all of

these trees, in the case of AdaBoost, you take a weighted

vote, in this case, it'd be a weighted average, you take a

weighted average of all these... you can call it a weighted

vote, it's a plus one/minus one type of thing for

classification. You take a weighted average of all of these

trees, and the weights are those scores that we assign to

each one. Two things are happening. Each model is

favoring the observations that were misclassified in the

previous model. We are focusing on the errors. The

breakthrough in AdaBoost was, let's not just do random

trees, but let's improve iteratively every time, to focus on

the things we didn't do well in the previous tree.

 00:43:40 The second thing is, let's also consider how well each one

of the trees is performing in our final result. Don't give

everybody the same. It's not a democracy anymore. What

is it called? A meritocracy. How well you perform gives

you a certain weight. Those were the two, I would say

main breakthroughs on AdaBoost. Of course, there's

more to it, but that took it to a new level. It's no longer

just a random bagging, or bootstrap aggregating, it's

conscious. Let's think of what we're doing, and iteratively

improve on this sequence.

Jon Krohn: 00:44:18 Starting on Wednesday, April 4th, I’ll be offering my

Machine Learning Foundations curriculum live online via

a series of 14 training sessions within the O’Reilly

platform. Linear Algebra, Calculus, Probability, Statistics

and Computer Science will all be covered. The curriculum

provides all the foundational mathematical knowledge

you need to understand contemporary machine learning

applications, including deep learning, LLMs and A.I. in

general. The first three sessions are available for

registration now, we’ve got the links in the show notes for

you and these three sessions will cover all of the essential

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
26

Linear Algebra you need for ML. Linear Algebra Level 1

will be on April 4th, Level 2 will be on April 17th, and

Level 3 will be on May 8th. If you don’t already have

access to O’Reilly, you can get a free 30-day trial via our

special code, which is also in the show notes.

 00:45:04 That's the one line main difference between Gradient

Boosting and AdaBoost?

Kirill Eremenko: 00:45:11 Sorry, no, we haven't gone into Gradient Boosting yet.

The one line main difference between bagging, bootstrap

aggregating, which is random forest, and boosting, which

is AdaBoost, is the word adaptive, adaptive boosting.

Jon Krohn: 00:45:26 Right.

Kirill Eremenko: 00:45:26 You're adapting to boost the observations that you didn't

predict well, that's what you're adapting.

Jon Krohn: 00:45:34 Right.

Kirill Eremenko: 00:45:34 It's a conscious method. Rather than, all right, let's rely

on the law of large numbers, and get lots of votes or

predictions, and average them out, like a democracy, in

AdaBoost, it's a meritocracy. It's a conscious meritocracy.

Let's adapt to consciously work on our mistakes, and

then also, let's give not just an average, but a weighted

average, because those are not performing well. Why

would we consider them in our final average as highly as

the ones that are performing well?

Jon Krohn: 00:46:08 Nice. I actually didn't know about AdaBoost before, so

great to hear about it. Thank you.

Kirill Eremenko: 00:46:14 Yeah, it's not that popular these days, because Gradient

Boosting blows even AdaBoost out of the water, but it was

an important stepping stone. I like the history of how

things developed. I thought I would mention it, and also,

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
27

for people's general understanding. For example, in the

course that I mentioned, which you can get at

superdatascience.com/level2, the number two, we don't

talk much about AdaBoost, but we go into some detail on

it. I think it's good to know the history of where things

come from, and if it comes up in a conversation, you'll

know.

Jon Krohn: 00:46:49 Sure.

Kirill Eremenko: 00:46:51 Now, we can move on to Gradient Boosting. We've laid the

foundation. The difference between just bagging, or

bootstrap aggregating, a blind democracy, nothing wrong

about that, versus a conscious meritocracy, so to speak.

Now, we can move on to Gradient Boosting. Gradient

boosting was originally proposed by Jerome H. Friedman

in 1999, and there's two papers you can find online. One

is called Greedy Function Approximation: A Gradient

Boosting Machine, and I think that was more of a lecture

that he gave, because it's got 40 pages or something like

that. The second paper you can find is Stochastic

Gradient Boosting. This is the person who created it.

What is Gradient Boosting, and how is it different to

bagging, bootstrap aggregating, and AdaBoost?

 00:47:45 The main thing with Gradient Boosting is that this time,

we're not just going to adapt. We're going to actually be

changing our sample. We're not going to be doing any

bootstrapping. We are working with the original sample

all the time. That's very important to understand. There's

no bootstrapping in Gradient Boosting. What you do in

Gradient Boosting is, we're going to look at Gradient

Boosting for regression first. You have your 1,000

customers. I can't believe this example stuck. That was

just a random thing I wanted to do for the trees.

 00:48:19 You have these customers, 1,000 customers that bought

candles from your store. You want to predict the future

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
28

spend of customers. Your target variable is your dollars

spent. What you do is, you take as your first step... again,

Gradient Boosting is again going to be an ensemble of

models. Your very first model is just an average. It's a

simple average. You take the average of all of the dollars

that all of your customers spend, and let's say you get

something like $57 for simplicity's sake. That's the

average of all your customers' spend. Next, what you do is

you calculate the errors. You look at, "Okay, $57 is my

average," that is, of course, a terrible prediction, a terrible

model. You just took an average. For some observations,

you'll have an error, some observations will be lower,

some observations will be higher.

 00:49:14 You basically calculate the error for each one of your

1,000 samples, and then you take those errors, whether

the error is $2 or $20 or minus $100, you take all of

those errors and you build a decision tree to predict those

errors. The first model, it takes the average, works with a

sample. The second model, which is our first decision

tree, it'll work with all of the errors that you got as a

result of the first model. Now, this decision tree will be

structured in some sort of way. It'll make its own

predictions, and now you will have, again, errors.

 00:49:55 You will have errors of this decision tree's prediction, and

some might have $5 error, some might have a minus $50,

minus $100. Again, you look at all the errors of the

predictions of this second model, which is a decision tree,

and you use those errors. Again, you'll have 1,000 errors,

in some cases it might be zero, but you'll have 1,000

values, and you use those errors, and you make another

decision tree. Your third model will also be a decision

tree, and it'll predict the errors of the second model. Then

you build a fourth decision tree, which will be predicting

the errors of the third model. Then you build a fifth

model, which is also decision tree, and you predict the

errors of the previous model, and so on. You chain them

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
29

together. The key word here is, you're chaining models

after each other.

 00:50:44 The first one is an average, and then it's decision tree,

decision tree, up to 100 times, however many decision

trees you want. Each one is just focusing on predicting

the errors. What's the point of that? Well, guess what?

Now, as our final model, we're not going to take the

average, we're not going to take the weighted average. As

the final model, we'll take the sum. You'll take your first

model, which is the average. You'll add the result of the

second model, which is whatever the decision tree

predicts for this kind of variable. Let's say you have a new

customer come into your store, and you want to predict

how much they will spend. The answer will be the

average, which was $57, plus whatever the next model,

model number two, which is a decision tree, whatever it

predicts, plus whatever the next decision tree predicts,

plus whatever the next decision tree predicts and so on.

 00:51:32 You add all of that up, and because each time you are

predicting the errors, now, your prediction is the average

plus, what would the error be for this person that just

came in? Okay, the error for this person is 57? Okay,

based on their age, based on the income, whatever the

decision tree is looking at, the error of this second of this

initial model would've been minus $101. You need to add

that. You go from 57 minus 101, I'm not that great. What

is it, minus 44? Is that minus 44? Yeah, minus 44. Then

the next model will be, what would the error have been

based of that prediction, the previous one? The error

would've been $50. Now you go up to $3, and then the

next model says, the error at this point is about $27.

 00:52:25 Now you go up to from $3 to $30, and so on and so on

and so on. Then the final result is, this customer, based

on their features and based on what the model predicts

for them, this customer will likely spend $39 in our store.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
30

That's how Gradient Boosting works. You're basically

chaining models to constantly just predict the errors of

the previous one, and that means in the resulting model,

you need to just add them up. Each prediction will be a

prediction of the errors, and in the end, you will get your

final result.

Jon Krohn: 00:53:01 Nice, very well explained.

Kirill Eremenko: 00:53:04 I just had this idea, it's probably good to call the first

model, the average, call it model zero, because otherwise,

it's confusing. The first decision tree is the second model.

The second decision tree is the third model. Model zero is

your average, and then model one is a decision tree.

Model two is your second decision tree, and so on and so

on and so on. The final result is the sum of this chain.

 00:53:29 As you can see, it's very different to what we had

previously, in the bootstrap aggregating methods, which

were bagging, basically a random forest, the way we took

the average. It's also different to the boosting method of

AdaBoost, where we took a weighted average of the

models. AdaBoost is in between. It's used as bootstrap

and it's used as aggregating, so it's a bootstrap

aggregating method from the sense of how the samples

are built, but it's a boosting method based on the

concept. AdaBoost is a transitional, whereas Gradient

Boosting is pure Gradient Boosting. There's no more

bootstrapping. Straight into, use the same data set all the

time, but you focus on improving, improving, improving,

improving.

Jon Krohn: 00:54:15 To summarize back, the random forest is random. This

went into your democracy versus meritocracy example.

With a random forest, you are randomly creating a whole

bunch of decision trees, and the more that you create,

you get this slight marginal improvement. When you go

from 1,000 random decision trees to 1,001, there's this

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
31

very marginal improvement. The core idea with adaptive

boosting was to not be randomly creating these decision

trees, but to use some information, like which data points

were misclassified previously, and let's overweight those

in the subsequent model so that we're consciously

iterating in the right direction adaptively, AdaBoosting.

Gradient boosting takes us another level further by not

just saying, "Let's focus on the data points that were

misclassified. Let's look at the residuals, the specific delta

between what the correct answer would've been and what

the model predicted, and let's fix those residuals." You're

focusing on where the most possible opportunity for

improvement is, and that's why Gradient Boosting is so

powerful.

Kirill Eremenko: 00:55:38 Yep, absolutely. Great summary. A question that you, our

listener, might have at this stage is, if you're focusing on

residuals, why is it called Gradient Boosting? Why isn't it

called residual boosting, or error correction or something

like that? Well, we'll answer this question right now. The

answer lies in the mathematical principles underpinning

this algorithm. I'm going to be a bit more out of my depth,

a little bit less experienced than Jon talking about this, so

Jon, please feel free to correct me if you feel that

something needs correcting. Basically, what happens is,

the explanation we just looked at, where you look at the

residuals and you build every next model in the chain to

predict the residuals of the previous one, is correct, but

it's a simplified explanation. The actual underlying

mathematics of it is that you don't look at the residuals of

the model.

 00:56:38 This is how it works in proper mathematical principles,

Gradient Boosting. Gradient boosting, take two. First

thing you do is, you define a loss function. You choose

what loss function you're going to use for this model.

Then you will calculate the gradient of the loss function

after each model is built. You have your first average, you

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
32

have your loss function, then, for every one of those 1,000

points, you will calculate the gradient of the loss function,

and you will use the next model in your chain. We agreed

that the original model is model zero with the average.

You've done the average, you've calculated the gradient of

the loss function. By the way, if somebody needs a quick

refresher on what a gradient is, a gradient is basically a

vector of partial derivatives of the loss function.

 00:57:28 You have a loss function, let's say it's based on two

variables, X and Y, then the gradient will be a partial

derivative of that loss function based on the variable X.

That's your first coordinate in the vector, and your second

coordinate is a partial derivative of the loss function

based on the variable Y. If you have five independent

variables, or five variables in your loss function, then it'll

have five coordinates in the vector. That's very brief

overview of what a gradient is. There is a cool video from

Khan Academy, if anybody wants to get a refresher on

what a gradient is. Really short, succinct, and gets to the

point. Back to Gradient Boosting. You have model zero,

which is the average. That's your prediction. Then you

calculate the gradient of your loss function for every

single one of those 1,000 points. Your next model, model

number one, decision tree number one, is going to be

built to predict those gradients that you've just

calculated. After model one is built, you will calculate the

gradient of the loss function for this model number one in

every single one of your 1,000 points.

 00:58:43 Now, model number two, decision tree number two is

going to be built to predict the gradients that you've just

calculated of model number one, and so on and so on and

so on. That's why it's called Gradient Boosting. A

gradient, it tells you in which direction your loss function

is increasing the maximum, and the higher the gradient,

the higher... sorry, it tells you in which direction the loss

function is increasing from this point, and the higher the

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
33

gradient means the higher increase in this loss function.

Your point is to minimize your loss function, and by

predicting the gradients, that's what you're effectively

doing, by chaining these models together.

 00:59:22 Now, how does this reconcile with what we just discussed

with the residuals? Well, it just so happens that this loss

function for regression problems is chosen in a very

conscious and deliberate way, and it's usually the simple

squared loss function that is used. Basically, if you think

of the mean squared error loss function, which is used

for, for example, linear regression, let's say it's observed

minus predicted squared, the sum of that, and for all the

observations, divided by N, number of observations, that's

an aggregate loss function. If you think of it for an

individual observation, what is the loss function for an

individual observation when you're using mean squares

error?

 01:00:06 Well, the individual observation's loss function is just

observed minus predicted squared. That's the loss

function for individual operation. In the case of Gradient

Boosting, we're using the same loss function, it's called

the simple square loss function, but we are just adding a

coefficient at the start, which is one half. The loss

function equals, for an individual observation, is one half

of brackets observed value minus predicted value, and

those brackets squared. When you take the gradient, or

you take the derivative of that, the two, the differential of

X squared is 2X, so the two comes out and it gets

canceled out with the one half coefficient that you have at

the beginning. It becomes observed. So the derivative of

the loss function is basically observed minus predicted,

which equals to the residual. So the loss function is

chosen consciously and deliberately in such a way that

the derivative of the loss function, which we're aiming to

minimize with this whole method, that derivative of the

loss function is the same as the residuals. And that's

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
34

where the actual mathematical explanation that we just

went through reconciles with the simplified explanation

we had earlier about the residuals. And I think that's

really beautiful.

Jon Krohn: 01:01:21 Nice, Kirill. All right, so that was all about regression.

What's different in Gradient Boosting when we have a

classification problem?

Kirill Eremenko: 01:01:29 Okay, so for classification, Gradient Boosting is not as

straightforward, is not as simple. The reason for that is,

when we chain these models, we can't just think of it as

adding up each... We'd still be adding up models, but you

can't just think of it as simply as we did in the case of

predicting the residuals, because in the case of

classification, we're predicting probabilities. And if you

start adding up probabilities from 100 decision trees,

you'll end up with probabilities of over one. And basically,

it's not as elegant.

 01:02:02 The underlying core principles, so we're not going to go

into detail on that. Again, check out the course if you'd

like to learn more, but we're not going to go into detail on

that. The main thing to take away about boosting or

Gradient Boosting for classification is that the underlying

concept is the same. You calculate the gradients, you

define a loss function, and in the case of classification,

what is normally used is called a binomial deviance loss

function. You calculate the gradient of your... well, the

first, the zero model, the model number zero is usually

set, it's not at the average, it's usually set at 50%. So if

you're, let's say, classifying between two categories, will

churn, will not churn, has cancer, has not cancer, you set

at 50%.

 01:02:41 Sometimes if you're more advanced and you have

reasons, you can set the baseline at higher, 75% or 25%

or whatever else, but that's up to your specific use case.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
35

So you set a baseline in the zeroth model, the original

prediction is 50%, whatever you choose. And then

basically you have a loss function. You will need to find

the gradients of the loss function for every one of your

observations, and then the next decision tree will be

minimizing that loss function. And when you choose the

binomial deviance loss function, which is, as I

understand, typically used for classification problems in

Gradient Boosting, what will happen is when you're

getting to the gradients, when you're calculating the

gradients, rather than probabilities, you will end up

working with log odds. So it's a very interesting transition,

and in the course we explored, it looks really cool.

 01:03:41 So you want to predict probabilities, but what the

decision trees are actually doing, what the chain of

decision trees is doing, is it's predicting log odds, and that

allows you to add them up. So you have the same

principle. You will be adding up the predictions of each

decision tree, but you won't be getting probabilities, you'll

be getting a log odds. We're not going to go into detail

what log odds are right now, they're related to

probabilities. And once you add up all the log odds from

your decision trees for your prediction, then you go from

the world of log odds, you do an inverse operation, and

you go back into the world of probabilities, and then

you'll get your final probability.

 01:04:20 So that's just a quick teaser for what classification looks

like in Gradient Boosting. Again, if you want to dive into

detail, check out the course that we have, Machine

Learning Level 2 at SuperDataScience, or feel free to do

this research on your own. But yeah, basically the

takeaway is underlying concept of gradients is the same,

and it works as well for classification as it does for

regression.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
36

Jon Krohn: 01:04:47 Nice. Yeah, as you started to introduce the classification

variant of Gradient Boosting, you said it's not as simple,

but actually it wasn't that much more complicated either.

You're using log odds, you just got to add that in.

Kirill Eremenko: 01:05:01 Man, log odds. For me, it took a while to get my head

around log odds. You're probably right, it's not that

complex, but it's just harder to visualize. I like the

regression alternative because you're visualizing this

chain, you're adding up, it makes sense. You're predicting

errors, you're constantly reducing this error through your

prediction. Whereas this one is like log odds, you have to

go back to probability. It's not as easy to just have a

picture in your head.

Jon Krohn: 01:05:26 Yeah. Yeah, yeah, yeah. Nice. All right, so I think then

you've now gotten through all of the Gradient Boosting,

the "vanilla." Everything that you said so far sounds

super amazing, but now I'm adding this vanilla adjective,

because it turns out today there's been several variants

on the regular vanilla Gradient Boosting that you've

described to get even more powerful results, I think.

Things like XGBoost, LightGBM, CatBoost. You want to

dig into those?

Kirill Eremenko: 01:05:58 Yeah. Okay, let's do it. So all of that was foundational and

very important. However, up until 2014, Gradient

Boosting, again, I'm not an expert or researcher, or

historian for that matter, but my impression is that

Gradient Boosting was purely or mostly theoretical. It

wasn't very applied, very applicable, because it was slow.

Because when you're building these hundreds of decision

trees, you have to find the splits.

 01:06:28 Imagine you have, for example, for salary, you have 1,000

estimated salary. So with only to have just 1,000 people

in your sample, you need to make that split. How does

the decision tree, one of the decision trees, how does it

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
37

know that it needs to split at 47,000 more or 47,000 less?

Why is it not 46,500? Why is it not 93,000? Why is it not

12,000 or $12,534? How does the decision tree know?

And if you have 1,000 samples, of course there's

optimization techniques built in, but it has to look

through a lot of options to find out where is that best

split, which split is going to give me the best result?

Because it only can choose one. At each ranch, it can

only choose one split. Even if you have just three

variables, it has to look through three variables and

through all possible splits inside these variables. So

theoretically it's a cool algorithm, but unless you find

ways to speed it up, it's just going to stay theoretical and

you're going to get bogged down. It's very slow. And that's

exactly what happened in 2014. A gentleman named

Tianqi Chen, I hope we're pronouncing that right, as part

of the... What is it called? OD-

Jon Krohn: 01:07:55 You're basically guaranteed to not be pronouncing that

right, because you're not going to know how to do the

tones. But I guess-

Kirill Eremenko: 01:08:00 Yeah. Yeah.

Jon Krohn: 01:08:01 ... yeah. Tianqi Chen is a good guess for us people that

can't hear tones. Unless, can you hear? Chinese tones, is

that something that you've studied?

Kirill Eremenko: 01:08:11 No. No, I have no idea. So I apologize if I mispronounced

that. I'm doing my best. I was just looking up the

abbreviation for XGBoost. So XGBoost was originally

introduced in 2014 as part of this community called

DMLC, I think it's on GitHub, called Deep Machine

Learning Community. It was produced by this gentleman,

Tianqi Chen, who I believe was a student at the time

maybe, or he's a professor right now. I'm not sure which

university. I would guess Carnegie Mellon. I'm not sure.

But basically he produced this as part of this open source

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
38

community in 2014. And the whole principle of XGBoost,

the XG stands for eXtreme Gradient Boosting. So the

whole principle, as I understand, was to come up with

ways to speed it up so we can actually use it in

applications and not leave it as a theoretical algorithm for

the rest of time. Yeah, go ahead.

Jon Krohn: 01:09:19 Yeah, you remembered correctly, your instinct was right.

Tianqi is an assistant professor at Carnegie Mellon,

though it seems like they're also a co-founder and chief

technologist at something called OctoML. So they're one

of those amazing people who's bridging academia and

practical data science. OctoAI is running, tuning, and

scaling the models that power AI applications.

Kirill Eremenko: 01:09:44 We should have them on the show, Jon.

Jon Krohn: 01:09:45 Yeah, it's a great idea, for sure.

Kirill Eremenko: 01:09:47 Sounds like my big [inaudible 01:09:48].

Jon Krohn: 01:09:49 That is certainly the kind of guest I love. We've had quite

a few guests, yeah, where they do both of those things.

Where they're academics, right on the cutting edge of

developing machine learning, but then simultaneously

they're at the cutting edge commercially. That is one of

my favorite guests. You're exactly right.

Kirill Eremenko: 01:10:08 Yeah. If anyone listening knows Tianqi Chen, author of

XGBoost, please shoot him an email and introduce him to

the podcast. We'd love to talk to him about it. That'd be

cool. Anyway, we are digressing. So after the method

came out in 2015, it became very popular. There was a

follow-up research paper from Tianqi Chen, which you

can find on archive. It's called XGBoost: A Scalable Tree

Boosting System. That was published in 2016.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
39

 01:10:40 Okay, so after the method came out, it became super

popular. For example, in 2015, the year after it came out,

out of the 29 winning solutions on Kaggle, 17 of them

used XGBoost. I think eight of them were pure XGBoost,

and nine of them were a combination of XGBoost and

deep learning. But nonetheless, 17 out of 29, more than

half of the winning solutions in Kaggle, literally the year

after, were already using XGBoost. That's how popular it

was.

 01:11:11 Also, on the KDNuggets Cup in 2015, again, the next

year, XGBoost was used by every winning team in the top

10. How cool is that? And that's because, again, I'm not a

researcher, but as I understand, XGBoost was the

transition from theoretical Gradient Boosting, which

sounds amazing but it's very difficult to apply because of

its computational inefficiency and demand for resources

and other things, it was the bridge to applied Gradient

Boosting.

Jon Krohn: 01:11:46 Nice. Did you mention and I just didn't quite catch it, that

XGBoost stands for eXtreme Gradient Boosting?

Kirill Eremenko: 01:11:52 Yeah, yeah, yeah. Yeah.

Jon Krohn: 01:11:52 Oh, you said that?

Kirill Eremenko: 01:11:52 Yeah.

Jon Krohn: 01:11:53 Well, there you go. Now I reiterated it, totally on purpose.

Kirill Eremenko: 01:11:57 Yes, eXtreme Gradient Boosting. Okay. And to this day. It

wasn't just 2015. To this day, XGBoost, and LightGBM

and CatBoost, which we'll talk about just now, are some

of the top used non-deep learning algorithms. So when

you look at, I think, Christian Chabot... Is it Christian

Chalet or Chabot? The creator of Keras, what is his

name?

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
40

Jon Krohn: 01:12:24 Oh, Francois Chollet.

Kirill Eremenko: 01:12:24 Francois. Francois Chollet. I was thinking of the founder

of Tableau. Francois Chollet did a post, I think in 2018.

Yes, it was 2018. He asked the top first, second, third

place teams on Kaggle which methods they used between

2016 and 2018, and it turns out the first place is Keras,

which is deep learning, but the second place is LightGBM,

third place is XGBoost. So even to this day, they're still

being used.

 01:13:00 Anyway, so let's dive back into what is great about

eXtreme Gradient Boosting that wasn't so great in normal

Gradient Boosting. So first thing, it uses special kinds of

decision trees. The way the decision trees... in normal

Gradient Boosting, the way they're constructed is by

greedily, is a technical term, greedily choosing the one

split that maximizes the reduction in loss function across

all possible splits in each step. It looks for the one, the

maximal, the best split. Whereas in XGBoost, it uses

something called similarity score, and then it uses a gain

calculation. So basically it looks at... Okay, so the way to

think about this without going into the mathematics is,

how similar are the observations? So we have, let's say,

our first split. We have those 1,000 observations. This is

tree number one. We're looking at the errors. We have

those 1,000 errors. How similar are those errors between

each other? You calculate similarity score, and then you

can have the split in different areas.

 01:14:06 So for each split, and it has an optimized way of not going

through all these possible splits. For example, the salary

variable. There's an optimized way that it looks at fewer of

them with a certain step, but we're not going to go into

detail on that. But basically it looks at, okay, so if I do the

split here, what's the similarity score on the left of the

split and on the right? So if I do a split in this branch, I'll

end up with two leaves. What's the similarity score of the

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
41

observation that will end up in the left leaf, and what's

the similarity score between the observations, between

among each other, of the ones that will end up on the

right leaf? Then you calculate a gain, which is calculated

as... you want similarity to be higher. The higher the

similarity, the better.

 01:14:53 The gain is calculated as similarity of the left leaf, plus

similarity of the right leaf, minus the similarity that you

originally had in the leaf that you're currently splitting.

What that does, is if the gain is greater than zero, that

means that you're going to actually gain something from

doing the split. If it's less than zero, you're not going to

gain anything. Also, you want to find the split with the

highest gain. So that's number one. They're a special kind

of decision tree. The way they think about the splits is

through similarity scores and gain calculations.

 01:15:25 The second thing is tree pruning. So you build this tree. It

builds it depth wise, so it goes from level one to level two

where you have your branch. You split into two areas, two

splits. Then you split again, you split into four. Then you

split again, you split into eight. So it builds it depth wise,

and then it prunes it. So pruning is like cutting it, going

from the bottom to the top and looking at the gain that

you have in each one of the leaves, the gain that we just

talked about. And then you have a hyperparameter

gamma. So when you're building XGBoost model, you'll

see a hyperparameter gamma. That is for this pruning.

 01:16:02 So gamma, let's say you set it to 100, or let's say you set

it to 110, for example, just not to have round numbers.

So let's have 110 as your gain, or your gamma. If your

gain in a certain leaf is less than gamma, then you will

remove that leaf, and then you'll go to the next one, go up

the branch. If the gain is, again, less than gamma, you'll

remove that leaf, and so on, until you hit a leaf with a

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
42

gain more than gamma. That way you reduce the size of

your decision trees. That's called tree pruning.

 01:16:33 Next one is regularization. XGBoost has built in

regularization, so it's not something you have to add

separately. It has built in L1 and L2 regularization, and

basically, without going into detail, regularization helps

with overfitting. So it helps with preventing overfitting.

Next one is sampling. As we discussed earlier, XGBoost or

Gradient Boosting, it uses all of the samples. So you have

1,000 samples, there's no bootstrapping you every time.

So the first time, model zero used 1,000 samples, you

take the average. With the next model, you take 1, 000

errors and you build that model. The next model, you

take 1,000 errors of that model, and so on, and so on,

and so on.

 01:17:23 XGBoost has built in sampling of rows. So you can tell it

that I don't want to use 100 rows. There's a

hyperparameter for this. I want to use 80% of the rows.

So now each tree will only see a random 80% sample.

Let's say tree number one, we'll see 80% of the rows, it'll

be built on that. Tree number two, we'll see a different

80% of the rows be built on that. Tree number three, and

so on, so on. Also does sampling of columns. As we

discussed with Jon, you can tell it to sample 80% of the

columns, or whatever percentage you want, or you can

build it on all of them, but there's a hyperparameter for

sampling columns.

 01:17:59 There is a built-in cross-validation, k-fold cross-

validation, if you want. Also, without going into detail on

the technicalities of this, XGBoost was developed with

high scalability and performance in mind. So there are

additional optimizations specifically for hardware and for

accelerated computing, basically, and also it supports

distributed computing to handle very large datasets. So

XGBoost was built with all those things in mind, and as a

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
43

result, it's very efficient and it allows it to do more

optimization cycles in the same period that a different

model will do. That's what makes it so incredibly

superior. I think it was actually Francois Chollet, if I'm

not mistaken, that said that, "The winning teams are the

ones that..." This isn't Kaggle, but of course the same

thing applies in industry. The best models are the ones

where you can iterate more times in the same given time,

so you want your model to be super efficient, super fast.

Jon Krohn: 01:19:05 Yeah, it's super fast. That's also key for when you get

your model into production where it's ideal, obviously, if

your costs are lower, you don't need as much compute to

be able to support lots of users using your model in real

time in that production infrastructure. So, valuable for

sure.

Kirill Eremenko: 01:19:22 All right, so that's XGBoost. Let's talk about LightGBM,

do a quick overview, and CatBoost. Okay, so LightGBM,

introduced by a team at Microsoft in 2017, a few years

after XGBoost. You can find a paper. The paper is called

LightGBM: A Highly Efficient Gradient Boosting Decision

Tree. And interesting comment, in 2022, LightGBM was

dominant out of the gradient boosted decision trees

models among Kagglers. So even already, according to

that poll that Francois Chollet did, it was already ahead of

XGBoost by 2018. More winning models on Kaggle were

using LightGBM.

 01:20:11 So what's super cool about LightGBM? Well, LightGBM

takes what we just discussed, that concept Jon and I just

mentioned about more iterations, more cycles, iterative

cycles in a given time, takes it to the next level. I don't

have a reference for this, but LightGBM is considered to

be, by some blog I read somewhere online, it's considered

to be 20 times faster than XGBoost. So it sacrifices

accuracy for speed, and does so consciously and in a few

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
44

methods, which we'll talk about now. It sacrifices some

accuracy for a huge gain in speed.

 01:20:50 Okay, first thing. The biggest, coolest thing about

LightGBM that you need to know, is that the trees use

histogram-based splits. So think about it, our column,

with salaries. We have salaries of 1,000 people, estimated

salaries, that we've estimated. The salaries can range

from zero, somebody who's currently unemployed, not

working, can range to maybe 100... I don't know what

salaries... it could be 200,000. What was the risk salary

for somebody doing machine learning at... what's it

called? Netflix? Or Anthropic? 600,000 I saw. Like crazy,

to the research-

Jon Krohn: 01:21:29 Yeah, base pay.

Kirill Eremenko: 01:21:29 Let's say for argument's sake, it goes up to $150,000. But

in that range you have 1,000 different values. It can be

$67 and $232.23. There's a huge variability of salary in

that. There's lots of options that salary take. What if you

had not 1,000 customers, or you had 10,000 customers?

There's now potentially 10,000 different values, 10,000

places you could split this dataset.

 01:21:58 But what if you take all of these salaries and you put

them into a histogram, basically you bin them? So you

create bins with a $10,000 step. So your first bin is from

zero to $10,000. Your second bin is from $10,000 to

20,000, then 20,000 to 30,000, and so on. So you end up,

if your salaries are between zero and $150,000, and your

bin size is 10,000, you end up with 150 bin. 150? No, you

end up with 15 bins, right? 15 bins. 10 bins gets you to

100,000. Yeah, 15 bins total. So you end up with 15 bins,

and now all of your observations, all of your customers

are put into this histogram or end up in one of the bins.

And now what LightGBM does, is it doesn't split on the

salary, it splits on the bins. So now it has only 15

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
45

options, or 14. If you have 15 bins, you only have 14

options where to split to make that split for salary.

 01:22:56 It's so much faster, right? Instead of looking at 1,000

different options, you're looking at 15. And if you have,

let's say, 10,000 customers, instead of looking at 10,000

options, hypothetically, you can only still look at 15. It

doesn't change. So this histogram-based split, of course,

it's less accurate, of course, you can't now split

somewhere in the middle of a bin. It has to be on the

borders of a bin. You can only split at 50,000 or 60 or 70

or 80, you can't split at $63,000, but you're sacrificing

accuracy. The whole idea behind LightGBM, in my view,

is sacrificing accuracy for speed. That's one of the biggest

parts.

 01:23:34 The next one is really fun. A bit more complex, but really

fun to understand. It's called Exclusive Feature Bundling.

Basically, this is reducing the number of columns at all

costs. At all costs, as in, whatever it takes, let's reduce

the number of columns. The authors of LightGBM, if you

read the paper, they say that most of the datasets

available in the real world in businesses have sparse

data, have sparse columns. A normal column like salary,

estimated salary, is a dense column. You've estimated

salary for every single observation. A sparse column is

that column that mostly has zeros. Here and there

sometimes it'll have some value.

 01:24:18 I was thinking about this last night of how to illustrate

this idea that why would most datasets have sparse

columns? Well, let's look at a couple examples. Let's say

you have a dataset which says, "Okay, these are our

1,000 customers, and you have five sales representatives

in your candle store that they can call. And each sales

representative has a column, sales rep one, sales rep two,

sales rep three. And you're recording, if a customer called,

which sales representative did they speak with, and for

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
46

how many minutes?" So basically, sales rep one will have

number of minutes for each customer they spoke with. It

might be five minutes for customer one, it might be 120

minutes for customer number 733, et cetera, et cetera.

 01:25:09 But for most customers, it's going to be zero. There's no

chance a sales representative spoke with... They only

spoke with maybe, out of your 1,000 customers, they only

spoke with 12 over the course of a month or something

like that. And then sales rep two will have values for other

customers, and so on. Most of the values in these

columns will be zero.

 01:25:32 Let's look at another example, just to illustrate the point.

You could have, for example, trucks. At a mining

operation, you have 1,000 trucks and they can only do

one of three jobs, or one of five jobs, and the jobs are the

columns. So then you would have how much time or how

many kilograms of ore did that truck do on that job? And

then there could be another column for maintenance. For

example, how many minutes did the truck spend on

maintenance? And so on. So there can be a lot of columns

that have mostly zeros and some values in it.

Jon Krohn: 01:26:07 Big surprise that our Australian podcast guest is talking

about ore mining.

Kirill Eremenko: 01:26:13 Yes. Yes, that's true. I actually worked on a project

relating to that for six months back at Deloitte. It was

really fun to go fly out to the middle of nowhere and be on

this analytics project. Really cool.

Jon Krohn: 01:26:29 Putting an occasional one in a column that's otherwise all

zeros.

Kirill Eremenko: 01:26:33 Yeah, yeah. But in this case, we're looking at columns.

It's because it's easier to talk about regression. Rather

than classification columns, we'll look at columns with

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
47

continuous variable, continuous values. So that was a

second example of a sparse column. You can imagine loss

of sparse columns in any kind of industry, like medical

datasets, like which doctor this patient saw or procedures

they had. You can imagine columns with time sheets of

employees and things like that.

 01:27:05 Oh, you had a great podcast with the person from Spotify.

Remember that podcast?

Jon Krohn: 01:27:12 Spotify? Oh, yeah. Erik Bernhardsson. The guy-

Kirill Eremenko: 01:27:17 Erik Bernhardsson.

Jon Krohn: 01:27:18 ... who developed the Spotify [inaudible 01:27:19]-

Kirill Eremenko: 01:27:19 What episode number was that? That was such a good

podcast. I loved when he was talking about... He was

talking about sparse columns, because they had a huge

spreadsheet or dataset at Spotify where each column is a

song and each row is a customer, and each value is how

many minutes of that song did that customer listen to it?

It's mostly zeros because you don't listen to all of the

songs. It's a very sparse dataset.

Jon Krohn: 01:27:47 Yeah, that was episode number 619. Yeah, it is definitely

a great episode with Erik Bernhardsson. He's an amazing

speaker, an amazing technologist, an amazing

entrepreneur.

Kirill Eremenko: 01:27:57 Yeah, I loved that episode. So there's sparse datasets all

over business and industry. We don't see them that much

in practical practice tutorials or examples, and that's why

it's important to do labs, like live labs or workshops,

which expose you to these kind of real world scenarios.

But they exist and they're all over the place.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
48

 01:28:17 What LightGBM does, is it... we're not going to go into

detail on this, but basically it combines sparse columns

into fewer columns. You might have 100 sparse columns.

It has a method for combining them, even if they're

talking about different things. One could be talking about

salaries, another could be talking about kilograms,

another one could be talking about, I don't know, time. It

has a way to combine them into, from 100, you might cut

it down to five or four columns. And that's very beneficial

for Gradient Boosting decision trees and other methods. It

really speeds up the decision tree building process.

 01:28:57 We talked about sacrificing accuracy. The way it sacrifices

accuracy is that in some cases it will combine... like in

some cases, a row might be more populated than other

rows. It might have values in a lot of these columns. Well,

LightGBM will cut out, drop some of the values in order to

achieve this combination. So we'll reduce accuracy by

allowing data loss, but at the same time, the speed will go

up. So that's called Exclusive Feature Bundling.

Jon Krohn: 01:29:27 Nice.

Kirill Eremenko: 01:29:28 Good. Cool. Next one is Gradient-Based One-Side

Sampling. This is a really cool one.

Jon Krohn: 01:29:33 Oh, yeah. When you say next one, it's another... We've

had a few of the key ideas behind LightGBM, which also,

the etymology of that Light Gradient-Boosting Machine is

what GBM stands for there.

Kirill Eremenko: 01:29:48 Oh, great. Yeah, yeah, that's right.

Jon Krohn: 01:29:51 So Light, the idea that it's so much faster, 20 times faster,

as you've said, relative to XGBoost, which already was

super fast relative to the vanilla Gradient Boosting that

you went into. So you have been enumerating most

recently the main ideas behind how LightGBM is 20 times

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
49

faster than XGBoost. The first one was histogram-based

splits. The second one was Exclusive Feature Bundling.

And now you're going to go into a third one, which is...

Kirill Eremenko: 01:30:23 Gradient-Based One-Side Sampling, or GOSS, G-O-S-S,

for short. It sounds complex. It's actually very simple.

Based on what we discussed, it'll be very easy to get your

head around it. Basically, once you're building a decision

tree, you have the gradients that you want to predict and

you want to reduce your loss function. Instead of building

a decision tree for all of the observations, right? Or

instead of sampling 80% at random like XGBoost can do,

why don't we be smart about it and why don't we look at

these gradients? So we have 1000 gradients. Let's order

them from largest to smallest, and let's take the top 20%,

so top 200 gradients and use them plus of the remaining.

So that's a hyperparameter A and then there's a

hyperparameter, we'll call it B. Then you have the

remaining 80%, the remaining 800 gradients of them.

Just to have a representative dataset, take a random

10%. So take a random 80. So as a result, you will have

200 observations with the highest gradient plus 80

observations random ones with lower gradients, and you

have now a sample of 280. And you're going to build a

decision tree based on that.

 01:31:46 And why is that? Of course, you're sacrificing accuracy.

You're using fewer rows. But you're gaining a lot of speed,

and you're not sacrificing that much accuracy because

you're taking the top 20% gradients that you need to

improve anyway. So why worry about the 80-20 rule,

right? Let's improve these 20% gradients 'cause they're

the highest. So that's what gradient-based, and it's called

one side sampling because you're taking the highest 20%

of the gradients. So in total, if your parameters are 20%

and 10%, you'll end up with 28% of your dataset. So

that's gradient based, one side sampling, that's the third

main idea behind LightGBM. And the fourth one is called

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
50

leaf-wise tree growth. So XGBoost and normal grain

boosting have depth-wise tree growth. So you start at

level one, the branches, you have an if-else condition.

Then you have two branches, then you split each one of

those into four.

 01:32:40 So you get four branches in the total. Then you split that,

you get eight and so on. So it keeps going from top to

bottom. At each level, this splits on both sides, on all of

the sides. Whereas LightGBM approaches this in a

smarter way, it's like, "Why should we build such a

massive decision tree? Let's do one leaf at a time." So at

the start, you split into two branches. Then you have one

on each side, right? So now, instead of splitting both, you

only split the one that will give you the best result, the

best improvement for your model. So the left side or the

right side. Let's say you split the right side, now, you have

three leaves in total instead of four. Now, you split one of

those leaves.

 01:33:25 Now, after this split, let's say you split the most bottom

on the left, right now, you'll have four leaves in total. So

you're adding one leaf at a time, increasing the number of

leaves by one because you're splitting one leaf at a time.

Whereas in the other one, in the XGBoost, you're

doubling your number of leaves every time. And the way

that this can be beneficial is in LightGBM, you'll have a

parameter of maximum number of leaves. So your

maximum number of leaves might be like 30. And so

instead of getting there by doubling every time, you're

getting there in a more conscious way. And your decision

tree will look very different because you're using the best

splits every time. So that was the fourth and final main

idea behind LightGBM that makes it sacrifice a bit of

accuracy for a huge gain in speed.

Jon Krohn: 01:34:14 Nicely done, Kirill. You clearly know this stuff well. All

right, so we've had of the specialized real-world Gradient

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
51

Boosting approaches that we see lots of winning

competitions that people talk about. Absolutely, XGBoost,

LightGBM more recently in the last couple of years. And

the final one, CatBoost is one to definitely talk about. And

that is also actually one. I've done a standalone episode

on CatBoost before.

Kirill Eremenko: 01:34:39 Oh, wow. Cool.

Jon Krohn: 01:34:41 Yeah. Episode number 694. It was just a Five-Minute

Friday episode. You understand it a lot better than I do,

though. I need notes.

Kirill Eremenko: 01:34:49 Let's see. Let's see. Please correct me if you find anything

out of order. All right. So let's talk about CatBoost.

CatBoost Stands for Categorical Boosting. It was

introduced by a team at Yandex in 2017. A paper is called

CatBoost, unbiased boosting with categorical features. If

you want to have nightmares of mathematical formulas,

have a look at that paper. It is so heavy on math. So let's

go through the main ideas right now. And there's only

just two main ideas that I wanted to highlight. There's, of

course, more to the algorithm, but these are two main

ideas. The name categorical boosting is that it deals very

well with categorical features. So if you have features,

columns in your dataset that are categorical, it handles

them automatically. A quick note is that LightGBM also

handles... So XGBoost doesn't handle them

automatically, you need to one-hot encoding.

 01:35:49 LightGBM handles categorical variables automatically.

Probably avoid doing one-hot encoding with LightGBM.

What you need to do with LightGBM is you need to

convert your categorical variables to integers and point a

LightGBM at the categorical variables and it will deal with

them, but it's not as good as CatBoost. So CatBoost is

extremely adept at dealing with categorical variables and

it does it automatically on the fly. How does it do it? Well,

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
52

let's talk about one-hot encoding. Let's say we have a

dataset with your customers, and your 1000 customers

are from two different countries. They're from the UK and

from France, right? So you have a column where it says

country and it's UK, France. UK, France, France, France,

UK and so on. So what you're going to do with one-hot

encoding is you're going to replace that column because

machines, normally, can't deal with categorical variables

like words. So you want to put numbers in there.

 01:36:54 So you're going to create one-hot encoded columns,

basically dummy variables. You're going to replace, you

create two columns, one for UK and one for France. And

so whenever the customer is from UK, it'll be one in the

UK column, zero in the France column. And whenever the

customer is from France, it'll be zero in the UK column,

one in the France column. And then actually, you will

drop the second column. You want to avoid something

called the dummy variable trap because one column is

enough to encode two categories. So you'll just have one

column, for UK one or zero, which means in France. But

if you have, let's say three countries, France, UK,

Germany, you will have two one-hot encoded columns. If

you have 10 countries, you will have nine one-hot

encoded columns or dummy variables.

 01:37:41 And as you can see, as the number of categories grows,

the number of columns explodes. And that is very bad for

decision trees because they have to think about more

columns which they need to consider. That's kind of the

opposite of what LightGBM was doing by combining

sparse columns. So that can be bad for decision trees.

Also, there's other reasons why one-hot encoding is not

great for decision trees. For example, it's hard to assess

the importance of the feature country. Like you'll end up

with, let's say, nine columns for different countries. You

can assess how important is Germany or how important

is France, yes or no in your final result. But it's hard to

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
53

assess how important is country overall. Another reason

that it's bad is, for example, for decision trees, if you split

your countries or your categories into different columns

with one-hot encoding, you can't make a split in your

tree.

 01:38:39 Let's say the if-else condition, you can only say, "Is it

France, yes or no? Is it UK, yes or no? Is it Germany, yes

or no?" You can't say. " If it is UK or Germany, go left. If it

is France or Monaco go, right?" You can't do that. So it

limits the splits, the decision trees can do. Also, you get

loss of ordinality. Let's say you have a categorical column

with high school bachelor, master's, or PhD degrees. If

you split into one-hot encoded columns, there's no longer

that ordinality that high school comes before bachelor,

bachelor comes before masters, masters come before

PhD. You've lost that data, that information and so some

other things. So basically, there's reasons why one-hot

encoding is not the best for decision trees. Just as a note,

one-hot encoding is actually a great method for certain

algorithms such as linear regression algorithms and

algorithms based on dot product, I think.

 01:39:33 That's where it works really well, like neural networks.

That's where one-hot encoding is very, very relevant,

works well, et cetera. Decision trees, not so much. So

there's a different approach to how you can... There's

actually many ways how you can encode categorical

variables, it's just one-hot encoding is the one we most of

the time use and that's why we're so familiar with it.

There's an approach called target encoding, and it wasn't

introduced... It's separate to CatBoost. CatBoost uses a

special type of target encoding. But in general, what

target encoding does is you take your column, let's say,

we have Germany, France, and the UK in our country

column for our customers. And then you look at the

target variable, and the target variable is how much did

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
54

they spend in your store. So the "What we've been

predicting this whole time?"

 01:40:20 For target encoding, the simplest way of doing it is you

take all of the rows that have Germany and you take the

average of your target, let's say it's $57.32. Then you take

all of the rows that have France and you take the average

of your target, let's say it's $98. And take your older rows

that have UK and you take the average of your target,

which could be $125. And then in your categorical

column, you could replace the word Germany with

$57.33, whatever it was. Let me write that down, 57 and

33 for Germany. For France, you replace it with whatever

we said, I forgot. So let's say $92.50. And for UK, you

replace it with $125. It's a bit mind-blowing when you

think about it because you're replacing words or

categories with continuous variables. The average of your

target is mind-blowing for that reason. Well, yeah, the

second reason mind-blowing is your... Well, we'll get to

that in a second.

 01:41:29 So why are we replacing categories with continuous

variables? Like instead of Germany, it's $57.33. France is

92.50, UK is 125. Well, it's called target encoding because

now, you're taking and substituting the category for the

relationship that the category has to the target. So there's

clear relationship that Germany has a lower average

target than France, and that has a lower average target

than the UK. And all you're doing is you're taking the

average of your target and it's substituting the words of

the category with that average. And the one thing to

remember about machine learning is it doesn't have to be

perfect as long as it works. And this works, this really

works and helps you split your decision trees better.

 01:42:18 One thing that you might be wondering and rightly so is

that "Hey, but we're taking the target and we're putting

the value from what we're about to predict into our

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
55

features." So we have, it's called data leakage, right? So

you're leaking information that you want to predict from

your dependent variable into your independent variables

using target encoding. And there's certain ways of

combating that. For example, there's k-fold target

encoding, there's weighted target encoding, there's k-fold

weighted target encoding. We're not going to go into detail

on that, we talk about that in depth in the course. But

there are ways of combating that and reducing the data

leakage to some extent. And this is where we get to

CatBoost. The way that CatBoost deals with this problem

of data leakage is it looks at one of two things.

 01:43:13 If your data has a timestamp column, basically a column

that says in which order these observations were

recorded, then it will use that, it will order your data

based on the timestamp column or based on the time

data, whatever you have, from the earliest to the latest.

And so basically, what it will always do is it will take a

row. For example, let's say row number 50 is France, so it

will take the average of all of the rows that had France

before it. So from row 1 to row 49, it'll look at all of the

rows that have France and it'll take the average of the

target for those 49 rows and put it as the target encoding

for France in row 50. And then it'll go to row 51, and let's

say it says Germany. So for that Germany, for row 51, it

will look at all of the rows between row 1, row 50 that had

Germany as the category. It'll look at the average of the

target and it'll use that average as a target encoding in

row 51.

 01:44:16 So you're never looking at the value of the actual target of

the row you're encoding, you're always looking at the rows

that came earlier. And you're not leaking data because

those rows actually came earlier in real life. There's a

cause and effect. They happened earlier, so you're fine.

You're allowed to look at that data in your target

encoding. So that's the simplest option. Second option is

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
56

if your data does not have a timestamp column or does

not have some order in which the columns came. What

CatBoost will do is it will shuffle your rows randomly and

it'll do the same thing. You'll basically pretend that there

is a timestamp column. And it'll go down, and it will look

at the previous rows and use the average as a target

encoding for this row, and the average will be calculated

on all the previous rows. It's a bit more complex than

that, we won't go into detail on that.

 01:45:10 There's four permutations, so it shuffles your data four

times. And then it uses these permutations, three of them

in one way, the other one in a separate way. So we won't

go into detail on that. But the point is it uses something

called ordered target encoding, and it replaces a

categorical variable with that. There still potentially can

be data leakage to some extent with any kind of target

encoding, especially if you're shuffling rather than using a

data timestamp column. But again, the big takeaway for

me, anyway, from all of these Gradient Boosting methods

and their optimization techniques is that it doesn't matter

if it's not perfect, machine learning doesn't have to be

perfect. It has to give it results.

 01:45:55 And even if there's some data leakage, who cares? If your

model works. It's not perfect, but it works. It gets you the

result. It works on the test dataset, it passes your k-fold

cross validation. Who cares that there's a bit of data

leakage, or a bit of loss of data, or a bit of inaccuracy? As

long as it works. And that's what these Gradient Boosting

methods is so good at is it that trade off of, "All right. We

have Gradient Boosting, which is theoretical, what's the

point of that?" Let's do some trade-offs. Let's make it

faster. Less perfect, but faster. And boom, we get amazing

results.

Jon Krohn: 01:46:27 Wow. Yeah, you definitely know this way better than I do.

I just learned a ton about CatBoost. So all of those are the

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
57

main ideas for why CatBoost works so well for categorical

data. As a Gradient Boosting algorithm, I think it's the

obvious go-to choice for working with categorical features.

And yeah, so you talked about how it doesn't use the

typical one-hot encoding that you would get with a

regression model, you combat data leakage, you have all

those permutations. And yeah, that's how it's so powerful.

Kirill Eremenko: 01:47:05 Perfect. Yeah, exactly. And the second reason why

CatBoost is powerful is that it can... Excuse me. The main

idea about CatBoost is it's very straightforward, very

simple. Yeah.

Jon Krohn: 01:47:17 Like other than the categorical part. So like [inaudible

01:47:19]-

Kirill Eremenko: 01:47:19 Yeah, other than the categorical. So-

Jon Krohn: 01:47:20 Yeah, yeah.

Kirill Eremenko: 01:47:21 So that was the main thing. That's why it's called

CatBoost. That's how it works with categorical variables,

it's the big one. But in addition, one that they threw in

there is symmetric trees. You can use symmetric trees.

You can build your own algorithm, brain boosting to

symmetric trees. They decided to use symmetric trees

because they're faster. So just imagine a normal tree as

we discussed, you have a split at the top. Then it goes

down one way, so you can split at salary at $47,000, for

example. Then you go left, you split by age at 25 or 45

years old, whatever it is like the decision tree decide. But

if you go right from the salary, you'll be splitting by, "Do

they have a loyalty membership?" And then you go

further down. So the tree spreads and the branches are

independent, they do whatever they want kind of thing.

 01:48:05 That's a traditional tree. With a symmetric tree, every

time you split, the branches will make further splits on

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
58

the same variable, on the same condition. So imagine, at

the top, you have is this person earning less than

$45,000. Okay. So if it's a yes, then you go left. And the

next condition you'll find on the left is, for example, "Is

this person younger than 25 years old?" Well, if you were

going to go right from the original one about the salary, if

you're going to go right, well, the split on the right is going

to be exactly the same. It's going to be, "Is their age less

than 25?" Now, from the age is less 25, you'll get two

splits on each side. So you'll have four leaves after that,

right? And there, the splits, let's say, "Do they have a

loyalty program, yes or no?"

 01:49:01 Each one of them will be a yes or no loyalty program. And

then from there you'll have eight splits, the next time, so

it'll double again. But let's say you're using a different

variable now, let's say you have a variable on the, I don't

know. Let's say, we've done age, salary, the distance to

your... Or how much time they spend on your online

store? So now, it's going to be, "Have they spent less than

15 minutes on the online store in the past month?" Well,

all eight will have exactly the same condition. So you're

building the decision tree in a way that every next level

horizontally across the tree is the same exact condition.

And why is that good? Well, of course, the tree becomes

weaker because of that.

 01:49:51 It's a weaker learner than a traditional decision tree

because it has less flexibility. But guess what? In

ensemble methods, we prefer weak learner. So it's

actually not a bad thing that it becomes weaker. And the

second thing, which is the main benefit is that it becomes

much faster during inference. Not during training, you

still have to build the tree during training, but during

inference it becomes much faster. And the way to think

about it is now, let's say, you have four levels. So at the

beginning you have a question about salary. The second

question is about age. The third question is about loyalty

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
59

program. And on the fourth level is about how much time

they spend less than 15 minutes on your website or not,

so time on the website.

 01:50:34 So now, because all of the levels are the same, you can

take, let's say a new customer comes to your store, you

can take those exact variables, salary, age, loyalty

program, "Yes or no?" and time on the website. You put

them into one vector and so it's a vector where they've got

their salary, however much they're making. Their age,

whatever it is. If they're loyalty, yes or no, one or zero.

And how much time they spend on the website. And now,

instead of going down through this decision tree and

every time deciding what yes or no, yes or no, yes or no...

So like making all these comparisons, you have to make

one comparison. You take the vector that you've built for

this customer, and you compare it to the vector of

conditions.

 01:51:19 So the vector of conditions will be the salary that you're

splitting on, let's say $47,000. The age, let's say 25 years

old. Do they have a loyalty program? There'll be a one for

a yes and the amount of minutes, let's say 15 minutes. So

you'll have a vector of conditions. You just have to

compare the original vector to the vector of conditions,

and you'll get a vector of ones and zeros. Where did the

condition, was it correct, was it not correct? Because all

of the splits on the each level are the same. Whichever

way you go, there is no difference in the splits. So you

just need to do this correct... Check once. And is your

vector for this customer... Then you do the mathematical

operation less than the vector that you are looking at, the

vector of conditions and then you'll get a result. It's like

one, zero, one, zero, for example. And then from there,

you'll know that the answer for that customer is $76.40.

 01:52:13 So it speeds up inference, meaning that instead of doing...

Before with a traditional tree, you will have to do up to X

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
60

comparisons, where X is the maximum depth of your tree.

With this one, with CatBoost, with symmetric trees, you

just have to do one comparison. You just compare one

vector to another and that's it. And then you get your

result very quickly. So if you have an application where

your speed at inference is important, whether it's like

real-time analytics or I don't know, some gaming

application, or something that has to happen fast in

inference, then you might consider using symmetric trees

or specifically CatBoost.

Jon Krohn: 01:52:57 Nice. So that was obviously a ton of information. You

have Kirill really pushed the boat out on providing tons of

technical content in podcast format. It's been extremely

well received so far. I thought it was going to be risky

when you started doing that earlier this year for

transformer architectures, but people have loved these

episodes. So thank you for all of that detail. I understand

that you're going to include a cheat sheet in the show

notes-

Kirill Eremenko: 01:53:25 That's right.

Jon Krohn: 01:53:25 ... for these three main Gradient Boosting approaches.

XGBoost, LightGBM, and CatBoost. You'll have a cheat

sheet from your SuperDataScience exclusive course made

available.

Kirill Eremenko: 01:53:38 That's right. That's right. It'll be a cheat sheet, a one-

pager that compares all three models side by side.

XGBoost, LightGBM, CatBoost. It's from one of the

tutorials. Happy to share it. It'll be in the show notes. Feel

free to download it and keep it as a memento of this

episode hanging out on the wall or something like that.

And it has all the summary of everything that we

discussed.

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
61

Jon Krohn: 01:53:56 Nice. So other than superdatascience.com/level2, where

that's just the integer two at the end as opposed to

straight characters. Level two, the number two.

Kirill Eremenko: 01:54:11 Yep.

Jon Krohn: 01:54:12 Superdatascience.com/level2, other than that, how

should listeners reach out to you or learn more after this

episode?

Kirill Eremenko: 01:54:21 Sure, I'll mention that just now. I just wanted to say with

this course... So in the course we talk about everything.

We talked about today in detail, of course, visuals and

stuff like that. In addition to those three methods, we talk

a lot about... Of course, you'll learn additional things like

one-hot encoding, k-fold cross-validation, bias-variance

tradeoff, hyperparameter optimization techniques like grid

search, target encoding, AdaBoost. And there's going to

be lots of practice. Hadelin walks through each one of

these models, XGBoosts, LightGBM, and CatBoost for

both regression and classification. For regression, he uses

an insurance dataset. And you get to see how these

models perform differently on the same dataset. And for

classification, he uses a churn dataset for customers,

whether they will churn or not from a company. And

again, you'll see how these three models perform

differently on that dataset.

 01:55:10 And of course, once you get your membership at

SuperDataScience, you get access to this course exclusive

on SuperDataScience to the Large Language Models A-Z

course, which we released recently. Also, exclusive to

SupeDataScience, not available anywhere else. Plus, at

the moment we're doing two live labs per month plus a

career session. We're gearing up to ramp it up to, my goal

is four live labs per month starting next few months. And

basically, that's a live experience where you get a coach,

an experienced machine learning, AI, visualization

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
62

practitioner who walks you through creating, solving

some real-world business challenges. And I think what

we've heard from our students, it's the main thing that

helps them get jobs. One of the biggest bonuses that

helps them get jobs is live trainings like that.

 01:56:00 So that was a bit of a promotion for SuperDataScience.

And in order to find me, you can connect on LinkedIn.

But to be completely open about it, I don't go on social

media these days often, the best way to connect with me

would be in SuperDataScience. We have a community,

people ask questions, chat with each other, and I'm there

every week, several times per week. And my goal is to be

able to answer everybody and connect with everybody

there.

Jon Krohn: 01:56:29 Nice. Thanks, Kirill. Well, it's great to know that they have

access to you through the superdatascience.com

platform. It sounds like a very vibrant place indeed and

increasingly exclusive content like this Gradient Boosting

course available just there. Super Kirill, thank you so

much for joining us yet again for another super technical

episode. I'm sure the audience loved it, and I wouldn't be

surprised if you weren't back again doing another one of

these sometime soon.

Kirill Eremenko: 01:57:00 Fantastic, Jon. Thanks again for having me. It was a lot

of fun.

Jon Krohn: 01:57:09 Another incredibly rich technical episode from Kirill. He

sure knows how to explain technical content well and

even have a bit of fun while doing it. In today's episode,

Kirill fill us in on decision trees, bagging, random forests,

AdaBoost, and the three leading Gradient Boosting

algorithms. XGBoost, LightGBM, and CatBoost. As

always, you can get all the show notes including the

transcript for this episode, the video recording, any

materials mentioned on the show, the URLs for Kirill's

http://www.superdatascience.com/771

Show Notes: http://www.superdatascience.com/771
63

social media profiles, as well as my own at

superdatascience.com/771. And if you'd like to meet in

person as opposed to just through social media, next

week I will be at the Data Universe conference at the

massive Javits Center in New York City. That's April 10th

and 11th next week. I'll be giving a talk on generative AI,

and we'll also be walking around interviewing attendees

to capture what you think of this massive conference.

 01:58:02 All right. Thanks to my colleagues at Nebula for

supporting me while I create content like this

SuperDataScience episode for you. And thanks of course

to Ivana, Mario, Natalie, Serg, Sylvia, Zara, and Kirill on

the Super Data Science team for producing another

extremely illuminating episode for us today. For enabling

that super team to create this free podcast for you, we are

deeply grateful to our sponsors. You can support this

show by checking out our sponsors' links, which are in

the show notes. And if you yourself are interested in

sponsoring an upcoming episode, you can get the details

on how by making your way to jonkrohn.com/podcast.

 01:58:32 Otherwise, please share, review, subscribe, and all that

good stuff. But most importantly, just keep on tuning in.

I'm so grateful to have you listening and hope I can

continue to make episodes you love for years and years to

come. Until next time. Keep on rocking it out there, and

I'm looking forward to enjoying another round of the

Super Data Science Podcast with you very soon.

http://www.superdatascience.com/771

