
 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/771   
1 

SDS PODCAST 

EPISODE 771: 

GRADIENT 

BOOSTING: 

XGBOOST, 

LIGHTGBM AND 

CATBOOST, WITH 

KIRILL EREMENKO  

http://www.superdatascience.com/771


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/771   
2 

Jon Krohn: 00:00:00 This is episode number 771 with Kirill Eremenko, the 

founder and CEO of SuperDataScience. Today's episode is 

brought to you by Ready Tensor, where innovation meets 

reproducibility, and by Data Universe, the out-of-this-

world data conference. 

 00:00:20 Welcome to the SuperDataScience Podcast, the most 

listened to podcast in the data science industry. Each 

week we bring you inspiring people and ideas to help you 

build a successful career in data science. I'm your host, 

Jon Krohn. Thanks for joining me today, and now let's 

make the complex simple. 

 00:00:51 Welcome back to the SuperDataScience Podcast. Today 

we've got another special episode with our most special of 

special guests, Mr. Kirill Eremenko. If you don't already 

know him, Kirill is founder and CEO of 

SuperDataScience, an e-learning platform that is the 

namesake of this very podcast. He founded the 

SuperDataScience podcast in 2016 and hosted the show 

until he passed me the reigns a little over three years ago. 

Kirill has reached more than 2.7 million students through 

the courses he's published on Udemy, making him 

Udemy's most popular data science instructor of all time. 

 00:01:26 Today's episode is a highly technical one focused 

specifically on Gradient Boosting methods. I expect this 

episode will be of interest primarily to hands-on 

practitioners like data scientists, software developers, and 

machine learning engineers. In this episode, Kirill details 

decision trees, how decision trees are ensembled into 

random forests via bootstrap aggregation, how the 

AdaBoost algorithm form a bridge from random forests to 

Gradient Boosting, how Gradient Boosting works for both 

regression and classification tasks. He fills us in on all 

three of the most popular Gradient Boosting approaches, 

XGBoost, LightGBM, and CatBoost, as well as when you 
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should choose them. All right, you ready for this 

extremely illuminating episode? Let's go. 

 00:02:14 Kirill, welcome back to the SuperDataScience Podcast. We 

are all so delighted to have you back yet again for another 

technical episode this time on Gradient Boosting. You 

were here back in January for a technical intro to large 

language models. Then you came back in February to 

build deeper and dig into encoder decoder transformers, 

so like a specialized further deep dive. It was volume two 

of this super popular January episode, one of our most 

popular episodes ever, and then now you're back for 

Gradient Boosting, which is quite different from LLMs, 

but also super valuable, super powerful. It's going to be 

an awesome episode. Thank you for coming on. 

Kirill Eremenko: 00:03:01 Thanks for having me, Jon. Very exciting. Probably I 

should say that for the benefit of our listeners that even 

though the space between the episodes is only about a 

month and a half or so, the knowledge I'll be sharing 

today comes from a course that we've just released, but 

we started this course back in end of 2022. Then we put a 

big pause on it, so it's not like I just put together 

something in a month on Gradient Boosting and I'm back 

here. No, it actually took a few months of research back 

in 2022 and then finalizing it in the past month to get it 

to where it is. I'm very excited now to come and share the 

knowledge we've learned creating the course for the 

benefit of the podcast listeners as well. 

Jon Krohn: 00:03:48 Nice. When you say we, you mean Hadelin right? Hadelin 

de Ponteves is your co-instructor on the course? 

Kirill Eremenko: 00:03:55 No, it's just me. 

Jon Krohn: 00:03:57 Oh. 
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Kirill Eremenko: 00:03:57 I'm joking. I'm joking, but you know how kings say we? I 

don't know, the royal we, yeah, yeah. No, of course. Yes. 

Hadelin and I, we've just published a course. It's called 

Machine Learning Level 2 because we have a Machine 

Learning 1 for complete beginners. Then Machine 

Learning Level 2 is for practitioners who are intermediate 

and want to go advanced, and it's all about Gradient 

Boosting. The reason for that is Gradient Boosting is, and 

the underlying techniques, specifically XGBoost, 

LightGBM, and CatBoost are by far some of the most 

used and reliably used modeling techniques in industry 

and in business. 

 00:04:39 If you're not doing deep learning, which is more for 

mostly, in my understanding is used for new tasks, novel 

problems, research based things. Of course, it has its 

applications in industry as well, but if you want just a 

reliable solution to a classification or aggression problem, 

XGBoost is one of the... XGBoost, LightGBM, or CatBoost 

are some of the go-to solutions. We want to equip our 

students with the best tools to make them successful in 

their careers. Doing fun stuff in machine learning AI is 

sometimes different to what you need to get the job done, 

and Gradient Boosting often is the solution to get the job 

done. 

Jon Krohn: 00:05:20 Yeah, that reminds me that you and Hadelin were back 

on the show in episode number 649 for an intro to 

machine learning to your level one course as well as just 

a general Machine Learning 101. Yeah, this is now your 

fourth appearance in just a little over a year. That episode 

actually also, by the way, was the 10th most popular 

episode of 2023. We recently- 

Kirill Eremenko: 00:05:46 Oh, yeah, I just listened to your podcast on that today in 

the car. Yeah, it was funny. I was listening to it. I was 

like, you mentioned the episode. I didn't realize you're 
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going from lowest to highest top 10, and I thought, "Oh, 

we were number one in 2023, but we were number ten." 

Jon Krohn: 00:06:01 You barely squeaked into the top 10. 

Kirill Eremenko: 00:06:05 I know, I know. Anyway, so yeah, that was about a year 

ago. That was for Machine Learning Level 1, and now 

we've had lots of people asking for Machine Learning 

Level 2. We've been delaying it because of other projects 

we've been working on, but now we finally released it. It's 

just gone live, very excited about, it's six and a half hour 

course. Of course, we'll go into a lot of concepts in this 

podcast, but right away I wanted to say if somebody 

wants to check it out, you can find it at 

superdatascience.com/level2. You'll need to subscribe to 

SuperDataScience membership. You'll get access to that 

course, which is exclusive to SuperDataScience, not 

available anywhere else. Plus you'll get access to the 

Large Language Models A-Z course, which is also 

exclusive to SuperDataScience, and all of our other 30 

plus courses, our community, our workshops at Live Labs 

that we're doing twice a month now, career sessions, et 

cetera. Worth checking it out at 

superdatascience.com/level2. 

Jon Krohn: 00:06:56 I recently organically noticed how many live sessions 

you're having in there, very cool. It sounds like the 

community is really starting to flourish at 

superdatascience.com. That's cool. I also wanted to add, 

earlier you were talking about deep learning versus 

Gradient Boosting or decision trees in general and why 

you might use one or the other. I think one of the easiest 

ways, conceptually for me, is that when you are dealing 

with very large data inputs like an image, or a video, or 

natural language, that's where deep learning, including 

deep learning transformer architectures tends to be very 

effective. But when you're dealing with things like tabular 

data that you could put into a spreadsheet, that's where 
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the kind of Gradient Boosting that we're talking about 

today tends to be the leading approach. 

Kirill Eremenko: 00:07:51 Absolutely. I was actually looking into this yesterday to 

see the differences, and you're absolutely right. Deep 

learning and [inaudible 00:08:04] related things are very 

powerful when you have additional structure to the data, 

whether it's like an image and so on, or you have tabular 

data with additional structure, you have a time series 

behind it with some specifics that are not just captured or 

not easily captured in normal tabular data. If you have 

ordinary, normal tabular data, which happens to be the 

most common type of data that businesses aggregate 

consciously and process these days, whether it's time 

sheets or maintenance or medical patient data, whatever, 

it's mostly tabular data. 

 00:08:42 That's what you usually find in business and industry 

without any additional pattern to it that deep learning 

can catch on and take advantage of. Then you can still 

apply deep learning, but XGBoost is just going to be 

Gradient Boosting models is going to be faster, more 

reliable, easier, quick win, and it's just a more standard 

approach to these kinds of problems. You don't have to 

reinvent the wheel, just apply it and off you go, some fine-

tuning and you're done. 

Jon Krohn: 00:09:15 Exactamundo, amigo. 

Kirill Eremenko: 00:09:17 Yep. Yep. Okay. Shall we start? We've got some exciting 

topics coming up. 

Jon Krohn: 00:09:22 Yeah, yeah, let's rock and roll. 

Kirill Eremenko: 00:09:23 Okay, cool. Cool. The first thing we're going to talk about 

is ensembling methods in general. What are ensembling 

methods and how do they work? An ensembling method, 

first thing that you need is typically ensembling methods 
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they... It's ensembling methods when you aggregate lots 

of models to produce one model. It's like one model that 

combines lots of models, and there's two main ways of 

combining models. But first, before we go to the two main 

ways of combining models, we need to realize that 

ensembling methods rely quite heavily on weak learners. 

They don't need the individual models that you're 

ensembling to be very smart or sophisticated. Typically, 

it's something simple. It doesn't have to be a decision 

tree, but in most cases, people choose decision trees 

because they A, are weak learners. B, they're quick 

learners, and C, they capture non-linear relationships. 

 00:10:25 Having said that, you can use a hundred linear 

regressions to create an ensemble of linear regressions if 

your specific use case requires that, but we're not going 

to go into custom use cases like that. We're going to look 

at the typical approach, and the typical approach is like 

take decision trees, put them together and get the 

ensemble. In case somebody needs a quick refresher or 

somebody's brand new to this, a refresher on decision 

trees. Basically just imagine like yes, no splits, right? Yes, 

if- else conditions. At the start you'll be like, you have all 

this data. Let's say you have a thousand customers and 

you're modeling how much future customers will spend 

on your online store where you're selling candles, for 

example. I was thinking, what would we be selling? 

Candles. I don't know, some food supplement or 

something like that. 

Jon Krohn: 00:11:20 Yeah, I don't know. Candles is such a random example. 

Do you like rooms that smell nice, Kirill? Is that- 

Kirill Eremenko: 00:11:25 I do like rooms that smell nice, but I've been recently 

learning that candles are not regulated. I don't know 

about the US, but in Australia, they don't have standards, 

so you got to be careful because the stuff they put in 

might not be healthy for you. 
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Jon Krohn: 00:11:37 One in every hundred is actually a stick of dynamite and 

you don't know. 

Kirill Eremenko: 00:11:42 That's too funny. Oh, okay. All right. Let's say you have a 

thousand customers and you want to predict based on 

those customers, the new customers are coming into your 

store in the future, how much they'll spend in your store. 

It's a regression type of problem, and what you will do is 

you'll model your existing customers with a decision tree, 

and let's say the decision tree splits out the following, the 

structure. At the top it'll be a split on let's say their 

estimated income. You have a variable of their estimated 

income, you've estimated it somehow, it's in your input 

data, and you're saying... The decision tree will say at the 

top, the first split is "Is there estimated income less than 

$47,000 per year or not?" If it's less than $47,000 go left. 

That's a yes. Go, right if it's a no. In case, and then you 

just visualize this tree, it's like a box. It doesn't look like a 

tree. It's like a box. Yes, no, then it's an if-else condition. 

If you- 

Jon Krohn: 00:12:41 It's like an upside down tree. It's a tree upside down. 

Kirill Eremenko: 00:12:43 Yeah, kind of it grows. Yeah, it grows upside down. That's 

right. It's right. At the top is the beginning of the tree. Is it 

called the root of the tree? 

Jon Krohn: 00:12:51 Yeah, the root of the tree. 

Kirill Eremenko: 00:12:52 Yeah. Okay. The root of the upside down tree. Then you 

go left if they do earn less than $47,000 per year, then 

you have another split, so you have another branching of 

the tree, and then let's say the condition tree from 

training has decided that the condition should be, "Is 

there age less than 45?" If yes, then go down to the left 

and we're going to keep it a simple, relatively shallow 

decision tree, and that's where we'll end for that branch, 

and it'll be, it's called a terminal leaf. 
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 00:13:24 That terminal leaf will have a value. What that value is 

that during training, out of all of the thousand customers 

that you have, all of the ones that fell into that branch 

that had income of less than $47,000 and age less than 

45, it'll take the average. For regression problem, it just 

takes the average of the customers that they spend there, 

and let's say it's $23. On the other hand, if the customer 

earns less than $47,000, but their age is not less than 45, 

so you go left first and then you go right, then the average 

of those customers was $15. Then let's go back to the top. 

If the customer doesn't earn less than $47,000, so they 

earn $47,000 or more, then at the very beginning you 

would've gone, right? There, let's say there could be a 

terminal leaf right there. It doesn't have to be symmetric. 

We'll talk about symmetric trees further down in this 

podcast. 

 00:14:17 There could be another leaf there. But there, let's say 

there's another split, and it's asking, "Is that customer 

signed up to your loyalty program or not?" It's a 

categorical variable. If they are signed up, it's a yes, then 

you go left down the tree, and because they're signed up 

to a loyalty program, their income is over $47,000, the 

average of those customers that ended up in that bucket 

is quite high. It's, let's say, $212 that they spend on your 

candles per month or whatever it is that you're modeling. 

But if they are not signed up to your loyalty programs, 

you would've gone right in that last branch. Let's say the 

answer is there is 48 in the terminal leaf. That's the 

average. 

 00:14:56 You get this decision tree that was built through training, 

and now any new customer that comes into your 

company, you can, based on these variables, you can 

model them and you can see, "Oh, is their income less 

than $47,000 or not," go left or right. Then if let's say they 

go left, you're like, "Okay, is their age less than 45 or 

not?" If their age is 45 or more, then you go, right, and 
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then you know, "Oh, okay, most likely they will spend on 

my candles in next month $15." Then you can make 

business decisions from that. That's like a simple 

refresher on how decision trees work. As you can see, it's 

quite straightforward and they can capture non-linearity 

because of these if-else splits. 

Jon Krohn: 00:15:39 Research projects in machine learning and data science 

are becoming increasingly complex and reproducibility is 

a major concern. Enter Ready Tensor, a groundbreaking 

platform developed specifically to meet the needs of AI 

researchers. With Ready Tensor, you gain more than just 

scalable computing storage model and data versioning 

and automated experiment tracking. You also get 

advanced collaboration tools to share your research 

conveniently and securely with other researchers and the 

community. See why top AI researchers are joining Ready 

Tensor, a platform where research innovation meets 

reproducibility. Discover more at readytensor.ai, that's 

readytensor.ai. 

 00:16:20 All right, so to recap back for the audience, this decision 

tree concept, definitely extremely easy to understand with 

a visual. 

Kirill Eremenko: 00:16:29 Yeah, for sure. 

Jon Krohn: 00:16:30 But it's the idea, yeah, the base of a tree, which for some 

reason... I guess because it ends up being on the top of 

the diagram because we read from top to bottom to 

bottom, so it makes sense to have the flow be from top to 

bottom, but that means that the tree shape is upside 

down. The base of the tree or the root of the tree is the 

starting point, and you have your first split right at the 

very top. Typically, I think with most of these 

approaches... I'm not the expert. I think you're much 

more expert than I am, but typically that first split is it is 

often the most important split. It's the split that'll get you 
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your biggest delta in whatever outcome. In your case, is 

somebody likely to spend a lot of money on candles on my 

website or not? That first split will often be a variable 

amongst all the variables available that is going to get the 

biggest, it's going to have the biggest relationship. 

Kirill Eremenko: 00:17:21 Yeah. 

Jon Krohn: 00:17:22 In this case, in your example, it was income, which 

makes a lot of sense. People with more income are more 

likely to spend money on candles on your website. Then 

from there, you go two ways on this path tree of possible 

decisions. I guess you can also imagine it like going on a 

journey. You are walking along a path and the path splits 

in two, all of the people with high incomes go one way. All 

the people with low incomes go the other way. Then once 

you get a little bit further along the path, the people with 

the high incomes, they encounter another split in the 

road. This time it's split on age, and so all the young- 

Kirill Eremenko: 00:18:02 No, sorry, sorry. It's not a... That's for the higher earners. 

For the higher earners, it's loyalty program. 

Jon Krohn: 00:18:09 Oh, right, right, right. Sorry. Yeah, I messed up. But for 

the visual analogy, the higher earners, they're going along 

their path in the woods and then it splits again a little 

while later. The ones, the higher earners on the loyalty 

program go one way. The higher earners that aren't go the 

other way and the same thing happens on the other side, 

but like you said, it doesn't necessarily need to be 

symmetric. It doesn't need to be the same variables that 

you're splitting on. The low income earners as they walk 

along their path, when they encounter a split, they have 

to split on their age instead of on the loyalty program. 

Yeah, I've never thought of it that way as the path, but I 

think that's easy... At least in my head as I'm speaking, 

it's quite an easy thing just to imagine that you're on this 

journey. 
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Kirill Eremenko: 00:18:55 I love it. Yeah. That's good for visualizing training, exactly 

how it would happen in training. Then a new candidate 

that comes onto your website would have to go down this 

path and look at the signs. I think we should rename 

decision trees to decision paths going forward. It's 

brilliant, seriously. 

Jon Krohn: 00:19:12 When you get to the end, so in this case, so you could 

have... It's a hyper parameter in your model when you set 

it up. You could have lots of levels, lots of bifurcations in 

the path. It's always two, by the way. You never get to a 

point on this journey and there's three possible paths. It's 

always two. 

Kirill Eremenko: 00:19:31 It's always if-else. 

Jon Krohn: 00:19:32 Always if-else, like you said. When you get to the end of 

that journey, which is a leaf node, so again, if you 

imagine the terminal node, leaf node, if you imagine- 

Kirill Eremenko: 00:19:42 Leaf node. 

Jon Krohn: 00:19:44 A terminal leaf node, if you imagine that the tree was 

upside down, these would be a whole bunch of leaves 

emanating out from the base of the tree. It's like holding a 

Christmas tree upside down after you've already... It's 

Christmas is over and now you're taking your Christmas 

tree out of the house. That's what a decision tree looks 

like. Yeah, you're holding it from the base up by your 

head. When you get to that terminal leaf node on our 

path analogy, then you could imagine that you're asked at 

that terminal point, "How much did you spend on candles 

at the website?" Then you can average all the people who 

got to that terminal node. You have different values. 

Yours, your high income earners who signed up to the 

loyalty program, they had an average of $212 spent. 

Kirill Eremenko: 00:20:36 That's right. 
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Jon Krohn: 00:20:38 And so on. We might be belaboring what decision trees 

are now to people who were already familiar with them, 

but for people who weren't, hopefully this discussion has 

been- 

Kirill Eremenko: 00:20:49 Hopefully the people who were already familiar with them, 

forgive us for this slight easy concept detour, because 

that was important for everybody to get on the same page. 

From now on, everything's going to be a lot of fun, and 

we're going to dive into more advanced topics. Right away, 

I wanted to also say that decision trees can be used for 

regression as we just discussed, and they can be used for 

reclassification. As you can imagine, reclassification is 

even easier. You go down these paths, as Jon was saying, 

during training, customers go. Then there's a yes, no 

question, "Did this customer churn or did this customer 

not churn? Does this patient have cancer? This patient 

does not have cancer?" Based on what you get through 

training, your final decision tree will either assign, you 

can set it up to assign a label. As soon as a new 

candidate goes through the tree and gets to the end, you 

can assign a label cancer or no cancer, or in case of 

classification problems, you can do that, or you can 

assign a probability if you like, 70%, 20%, whatever else. 

 00:21:57 It's two kind of ways to set it up for classification 

problems. That was a basic decision tree. Let's get to the 

fun stuff, ensemble models. Ensemble models combine 

weak learners. As we established decision trees are great 

candidates for weak learners. There's two main ways of 

building ensembles. One is called bagging, the other one 

is called boosting. We'll start with bagging. Bagging is a 

cool term because it's actually short for bootstrap 

aggregating. It's just one of those times in life when the 

real technical term, bootstrap aggregating, actually 

abbreviates to a cool world bagging, which properly 

describes the concept. 
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 00:22:35 I was reading about bootstrapping yesterday and really 

interesting etymology of this word. Bootstrapping comes 

from some boots, especially cowboy boots, on the back of 

the boots, they have these straps. I don't know what 

they're for, maybe hanging them up or something like 

that. You know what they're for? 

Jon Krohn: 00:22:53 No idea. 

Kirill Eremenko: 00:22:54 Okay, so bootstrapping is kind of like, let's say you have a 

fence in front of you and you need to get over the fence 

and nobody's around to help you. Well, the idea of 

bootstrapping is you pick yourself up by these bootstraps 

and you throw yourself over the fence, something that's 

physically impossible. You don't have... It's just weird, 

you can't pick yourself up. It just doesn't make sense. But 

that's where the term comes from. Visualize that jump, 

picking yourself up by the bootstraps. In terms of 

statistics, there's how it's applied. Why is it called 

bootstrap aggregating? 

 00:23:26 Well, the whole concept of these bagging type of models, 

let's say you have a data set of a thousand observations, 

and in statistics, you don't want to... Let's say you don't 

know the underlying distribution of this data set, or you 

don't want to make assumptions about this underlying 

distribution of this data set, and you want to make some 

inferences from it. What the process of bootstrapping is in 

statistics is taking this thousand observation dataset and 

taking samples out of it. You take, just imagine you put 

all of this thousand dataset, a thousand samples into a 

bag, and you pick out a thousand with replacement. You 

pick out a sample, you note it down which one you picked 

out, you picked out, I don't know, sample number 747. 

Then you put it back down, back into the bag, then you 

pick another sample and so on. 

http://www.superdatascience.com/771


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/771   
15 

 00:24:15 You pick out a thousand samples, but because you're 

doing it with replacement, that means that you might, 

and you likely will pick out same samples several times 

and some samples will be missed. That way you've just 

now created, and from your original sample, you've 

created a new sample of a thousand that is different to 

the original, but it consists of the same total observations. 

You do that multiple times. You bootstrap, let's say a 

hundred times, now you have a hundred samples, and 

now you can make certain inferences like apply... I don't 

know. The central limit theorem to that, or the law of 

large numbers, things like that, just do statistical 

inferences from that. Effectively why it's called 

bootstrapping is because you've done the impossible. You 

only had one dataset of a thousand samples, and then 

you've lifted yourself up by these bootstraps. Nobody was 

there to help you. You didn't make any assumptions 

about underlying data, and yet you created a hundred 

samples, which are all different, and now you can make 

statistical inferences. That's called bootstrapping. 

Jon Krohn: 00:25:16 Kirill, I looked up why boots have bootstraps. It's pretty 

obvious, they're for pulling on the boots. 

Kirill Eremenko: 00:25:24 Oh. We're idiots. Yes, of course. Oh, I love it. Yeah, that's 

good. Yeah, to help you put them on. Yeah, was my 

description of bootstrapping, correct for statistics? 

Jon Krohn: 00:25:37 Oh, it was unbelievable. I feel like there's almost even no 

point in me saying it back to you in my own words 

because it was beautiful. 

Kirill Eremenko: 00:25:43 Awesome. Thank you. 

Jon Krohn: 00:25:44 Bootstrap aggregation. Yeah, picking yourself up by your 

own bootstraps. That's a common expression. I think it's 

been around for a very long time. But yeah, just this idea 

that you're without, you're not really simulating new data. 
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You're not simulating new individual samples. You're not 

needing to go out and collect new data. You are 

bootstrapping based on what you have, and you're 

creating a whole bunch of samples with just what you 

have, so it's bootstrapping. 

Kirill Eremenko: 00:26:10 That's right. Bootstrap aggregation is the process of 

bootstrapping many times and then doing some analysis 

and aggregating. In the case of ensemble methods, that's 

exactly what we're going to be talking about. We're going 

to be doing bootstrap aggregating as we can see just now. 

But I just wanted to make a quick comment that the term 

bagging, like the abbreviation bagging, makes perfect 

sense because you're putting these samples into the bag 

and then you're pulling them out of the bag. It's a good 

mnemonic to remember what bootstrap aggregating is. 

 00:26:42 Let's talk about ensemble methods. We are already into 

this first one called bootstrap bagging, short for bootstrap 

aggregating. Let's talk about an example of a bagging 

method. That one to many of the listeners will be familiar. 

It's called random forest. What you basically do with 

random forest is you do bootstrap aggregating. You'd say 

you have a thousand samples. You want to create a 

random forest, which is an ensemble method, combining 

decision trees. Let's say you want to have a hundred 

decision trees in this random forest. You do bootstrap 

aggregating. You create a hundred different samples 

based, each one has a thousand observations based on 

your original one, just the way we just described, using 

that bootstrapping method. Then you build a decision 

tree from each one of these samples. Each one of the 

decision trees will see a slightly altered version of the 

original data. 

 00:27:34 Therefore, each one of these decision trees, even though 

they might have the same, they will have the same hyper 

parameters. Their tree structure and the breaks and the 
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splits in the tree will be different. Then you get the results 

of each decision tree and that the final model, the random 

forest prediction, will be the average for... Basically will be 

the average of these decision trees. Let's say you're 

talking about this candle sales example and how much 

each customer will spend. Instead of building one 

decision tree and predicting based on that, what you can 

do is do this bootstrapping process, build a hundred 

decision trees, each one with slightly different underlying 

data. Then see, let's say for a new customer that comes 

through into your store, you see what each model will 

predict. 

 00:28:26 Some models will predict $23, some models will predict 

$15, some $212, et cetera, et cetera, et cetera, or other 

values because each tree is built differently. Some models 

might predict $78. Some models predict $300 depending 

on how the tree was built. Then you'll just take the 

average. You'll say, "Okay, so this customer came into the 

shop." These hundred decision trees make their 

predictions. The average of what the random forest 

predicts is $51 and 23 cents. That will be your final 

output from the random forest. That's what you're going 

to use. 

Jon Krohn: 00:29:03 This episode is brought to you by Data Universe coming 

to New York's North Javits Center on April 10th and 11th. 

I myself will be at Data Universe providing a hands-on 

generative AI tutorial. But the conference has something 

for everyone. Data Universe brings it all together, helping 

you find clarity in the chaos of today's data and AI 

revolution. Uncover the leading strategies for AI 

transformation and the cutting edge technologies, 

reshaping business and society today, data professionals, 

business people, and ecosystem partners, regardless of 

where you're at in your journey, there's outstanding 

content and connections you won't want to miss out on at 

Data Universe. Learn more at datauniverse2024.com. 
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 00:29:42 Yeah, random forests are amazing, powerful models. 

What you're going to get into next with Gradient Boosting, 

it makes them even more powerful, but random forests on 

their own, they make that decision tree idea that we 

walked through in detail. The idea of going down those 

paths, or the upside down Christmas tree, when you only 

have one of those upside down Christmas trees, it's 

relatively... 

Kirill Eremenko: 00:30:04 Terrible. 

Jon Krohn: 00:30:04 Limited, yeah. The advantage of that kind of single 

decision tree is that it's very easy to understand. You can 

see it, you can see each of the bifurcations in the path, 

and you have very clear end values. But with a random 

forest, when you bootstrap aggregate a whole bunch of 

different samples, and then maybe randomly turn off 

some of the input variables for some of those random 

forests optionally, you end up with a super powerful 

machine learning model already. Random forests are 

amazing. They'll often get you near the top possible 

performance on tabular datasets, like we talked about at 

the beginning of this episode already. Random forests are 

super powerful, but the boosting now that we're going to 

get into, that you're going to get into, is even more 

powerful. Where random forests fall down, boosting 

managed to fill in the gaps, and do even better. 

Kirill Eremenko: 00:31:04 Yeah, absolutely. Before we get to boosting, I wanted to 

give a real-world analogy for random forests that really 

helped me understand this concept. Have you ever been 

to a fair, Jon? 

Jon Krohn: 00:31:17 Sure, yeah. 

Kirill Eremenko: 00:31:19 You go to a fair and there's rides, and roller coasters, and 

other little games that you play, and so on. One of the 

games that you sometimes see at the fair is this big jar 
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with lots of jelly beans inside, thousands, and you need to 

guess what the number of jelly beans is in there. You've 

seen that one? 

Jon Krohn: 00:31:37 I've seen that one. When I was a kid, actually, it wasn't at 

a fair, but it was at a friend's house. It was his birthday 

party, and there were 20 kids, and they had this game. I 

might've been maybe 10 years old, and I guessed the 

number of jelly beans on the dot. 

Kirill Eremenko: 00:31:50 Wow, very good. Very good. Basically, the principle is the 

person who gets closest wins the prize, or maybe some 

rules might be different, but let's say you might have to 

guess on the dot, like Jon did, or the person who guesses 

closest, or within a certain range. 

Jon Krohn: 00:32:11 You just have to get closest, I think. 

Kirill Eremenko: 00:32:14 What the most optimal strategy for this is, you combine a 

ensemble of weak learners, and because humans are not 

designed to predict the number of jelly beans inside a jar, 

where there's thousands of them, or hundreds- 

Jon Krohn: 00:32:31 Speak for yourself. 

Kirill Eremenko: 00:32:33 You seem to be very good at it. Humans, apart from Jon, 

are not designed for doing this. 

Jon Krohn: 00:32:38 I'm batting one for one on jelly bean guessing. I'm never 

going to do it again. 

Kirill Eremenko: 00:32:43 Keep it high. Keep your stats high. Humans are bad at 

that. Humans are perfect weak learners. What you need 

to do is, you get a notepad and a pen, and every time 

somebody comes to the stand and makes a guess to 

whoever owns this challenge, when they walk away, you 

ask them, "Hey, what was your guess?" You just write it 

down, and then the next person comes and guesses, the 
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owner or whatever tells them if they're close or not. 

Doesn't even tell them, just writes it down, writes the 

contact detail, to contact them if they're a winner. Then 

they walk away, and they walk past you, and you ask 

them again, "What did you guess?" You ask everybody 

who made a guess what they guessed. 

 00:33:22 Unless there's some sort of trickery going on, like it's a 

hollow in the middle type of jar or something like that, if 

there's no trickery going on, you'll get hundreds of these 

guesses which are a bit high, a bit low, a bit high, a bit 

low, and so on and so on. But then you take the average 

of them, like a random forest does, you created a own 

ensemble. You take the average, and the average will be 

the best guess. The average, in many cases, will be the 

closest to the actual amount, because people have their 

own differences in their thinking, in their perception and 

so on. Some will guess higher, some will guess lower, but 

on average, you'll be very close. If, the next time you're at 

a fair, you see one of those, give that a try. In general, in 

my view, that's a great analogy of what a random forest 

does. 

Jon Krohn: 00:34:06 That was a really nice analogy. Another one that is worth 

mentioning quickly is just that visual of this random 

forest. The clue of what's happening there is right in the 

name. You take a whole bunch of decision trees, and 

trees make up a forest. Each of those trees in the forest is 

slightly random, a random forest, in that there are 

different bootstrap aggregated data sets that make up 

each of the individual trees, so there's randomness there. 

As I mentioned earlier, there's also randomness around, 

sometimes optionally, what input variables are being 

considered, what independent variables are being 

considered. 

Kirill Eremenko: 00:34:47 Yes, the features. 
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Jon Krohn: 00:34:48 The features, yeah. 

Kirill Eremenko: 00:34:49 The feature selection. There's selection by bootstrapping, 

the underlying rows are different. But also, you could set 

a parameter saying that, "The trees don't see all of the 

features, they only see 80% of the features randomly." 

Each tree not only sees different rows to other trees, but 

also sees different columns, and that's a great way of 

combating over-fitting. 

Jon Krohn: 00:35:15 Going back to your earlier example of the single decision 

tree, where three of the variables that you got into were 

income, age, and whether they were signed up to the 

loyalty program or not, in a random forest, the first tree in 

the random forest might only have income and age. Then 

randomly, the second tree has age and loyalty program, 

and so on. You get slightly different answers every time. 

Kirill Eremenko: 00:35:43 Yeah, and it's actually a good point to say that trees can 

reuse variables. If it used income at the top and then it 

used loyalty program in the next split, and again, can use 

income. It is not limited to using a feature only once. It 

can be done as well. There's other hyperparameters, like 

the depth of the tree. You could set the maximum depth 

to eight or whatever. There's a hyperparameter for a 

random forest. You can set how main trees, 100, 1,000, 

how many trees you want, et cetera. We'll get a bit into 

that further down. I feel it's important to also mention 

quickly, on random forests, you can also use it for 

classifications. What we just discussed was regression. 

 00:36:20 Just keep in mind, throughout this podcast, we'll be 

talking about regression classification from time to time. 

Those are two big separate types of problems that are 

solved with all the methods, what we're discussing. You 

can also use it for classification. A random forest for 

classification would be, rather than taking the average of 

all of the trees that you have, you would use it as a voting 
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system. It's like a democracy, a democracy of random 

trees. Basically, the trees make their predictions, will this 

customer churn? Will this customer not churn? For a 

medical data set, does this patient have cancer or not? 

 00:36:53 Then you have these predictions from all the trees. 

Basically, you look at it like a vote. Out of 172 trees voted 

that this customer does not have cancer, 28 voted that 

they do have cancer. You could say that's a no, or if you 

want to be more cautious to avoid what is going to be a 

type two type of error, where you're saying they don't have 

cancer but they actually do, you might say, your 

threshold is not 50/50, your threshold is 75/25. In this 

case you'll say, yes, they have cancer, just to make sure 

and double check. Basically, you'd use it as a voting 

system. 

Jon Krohn: 00:37:30 Yep. 

Kirill Eremenko: 00:37:30 Cool. All right, let's move on to boosting, so excited. All of 

that was up to... which year was that? Up to 1995, and 

1995 was the first year when boosting was introduced 

conceptually. It didn't become very popular as this 

random forest until around 2016, when XGBoost came 

out, and we'll get to that further down. 2014, that's when 

XGBoost came out. Random forest was dominating, and 

for example, Kaggle competitions, a lot of people were 

using random forest all the way up to 2014, 2015. 

Whereas boosting slowly started growing, got developed 

and started growing from 1995. 1995 was when two 

authors, Yoav Freund and Robert E. Schapire, I'm not 

sure if I'm pronouncing that correct, Schapire, from AT&T 

Labs, they published a paper. Actually, no, they didn't 

publish a paper. They developed the concept of Gradient 

Boosting and then later, they published their paper in 

1999. Sorry, not Gradient Boosting, they didn't develop 

Gradient Boosting. They developed the concept of 

AdaBoost, so just boosting. The method, the model that 
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we're going to talk about is called AdaBoost. Just keep in 

mind, very important, AdaBoost is not a Gradient 

Boosting model. 

Jon Krohn: 00:38:53 The Ada there stands for adaptive. 

Kirill Eremenko: 00:38:55 Exactly. Thanks Jon. It's adaptive boosting. They got the 

prestigious Gödel Prize in 2003 for their work. It is for 

theoretical computer science. It's like the Nobel Prize, I 

guess, or a Nobel... actually, Gödel himself got the 

Einstein Prize. A Gödel Prize is a prize, but it's tiny. For 

somebody in this space, it wouldn't be a lot of money. I 

believe it's $5,000, so it's not a huge amount of money, 

but at the same time, it's more prestige. They got this 

prize in 2003. 

 00:39:29 Okay, let's talk about AdaBoost and how it works. 

AdaBoost was the first boosting method, and their 

thinking was, "All right, why are we doing these random 

forests? Why don't we adjust the approach?" In AdaBoost, 

what you do is, you take your 1,000 samples from your 

candle store, and you're going to train an ensemble, 

again, of weak learners. They're going to be decision trees. 

First decision tree, you train it on the full sample that you 

have. No bootstrapping, you just train it on the 1,000 

people that you have, 1,000 observations that you have. 

Then you look at, how well did this model perform? On 

which observations did it do well? On which ones did it 

not do well? Some observations, the errors will be low. On 

some observations, the errors will be high. 

 00:40:26 What you do is, you take the observations that had high 

errors, and you assign them a weight, a higher weight. 

The lower the error, the lower the weight, the higher the 

error, the higher the weight. Now, you start doing 

bootstrapping with the same data set. You take the 1,000 

samples, you put them in a bag, you're going to pull out 

of the bag with replacement, so bootstrapping, but the 
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way this bag is created is, the observations that had 

higher errors will have higher weights in this bag. This is 

a very simplified explanation. We're not going to go into 

too much detail in this, but just think about it like you 

have this bootstrapping method, but the observations 

that initially, in the first prediction had higher errors, 

they'll have a higher chance of getting picked out of the 

back. 

 00:41:11 Now, you bootstrap this new data set, or again, 1,000 

observations, but it's geared towards the observations 

that you didn't predict that well in the first instance. Now, 

you make a second decision tree to predict the results for 

this new bootstrap data set, and again, you get some of 

them that you predicted well, some of them that you 

predicted not so well. Again, you assign weights based on 

that. Now, you take the original 1,000 and you create 

another bootstrap, but you apply those weights that you 

had just assigned from the second result, and so on. 

 00:41:49 Every time you're bootstrapping, you are adjusting to 

favor the observations that you didn't predict well in the 

previous iteration. You keep doing that. Let's say you 

have 100 decision trees, so you do that every time. In 

addition to that, you also look at how well each decision 

tree performed overall. Each decision tree, you assign it a 

score based on how well it predicted overall. What's its 

overall error? Then in the end, you will have 100 decision 

trees. Each one is focused on predicting better the 

samples that were miss... by the way, AdaBoost was 

originally developed for classification, so it'll focus on 

classifying better the samples that were misclassified by 

the previous decision tree, and that is done through the 

weighted bootstrapping process. Also, each one of the 

decision trees will have a score based on how well it 

performed overall in its job. 
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 00:42:48 The final model results, rather than like in a random 

forest, where we took the average of all of these values, or 

in the case of a classification, we took the votes of all of 

these trees, in the case of AdaBoost, you take a weighted 

vote, in this case, it'd be a weighted average, you take a 

weighted average of all these... you can call it a weighted 

vote, it's a plus one/minus one type of thing for 

classification. You take a weighted average of all of these 

trees, and the weights are those scores that we assign to 

each one. Two things are happening. Each model is 

favoring the observations that were misclassified in the 

previous model. We are focusing on the errors. The 

breakthrough in AdaBoost was, let's not just do random 

trees, but let's improve iteratively every time, to focus on 

the things we didn't do well in the previous tree. 

 00:43:40 The second thing is, let's also consider how well each one 

of the trees is performing in our final result. Don't give 

everybody the same. It's not a democracy anymore. What 

is it called? A meritocracy. How well you perform gives 

you a certain weight. Those were the two, I would say 

main breakthroughs on AdaBoost. Of course, there's 

more to it, but that took it to a new level. It's no longer 

just a random bagging, or bootstrap aggregating, it's 

conscious. Let's think of what we're doing, and iteratively 

improve on this sequence. 

Jon Krohn: 00:44:18 Starting on Wednesday, April 4th, I’ll be offering my 

Machine Learning Foundations curriculum live online via 

a series of 14 training sessions within the O’Reilly 

platform. Linear Algebra, Calculus, Probability, Statistics 

and Computer Science will all be covered. The curriculum 

provides all the foundational mathematical knowledge 

you need to understand contemporary machine learning 

applications, including deep learning, LLMs and A.I. in 

general. The first three sessions are available for 

registration now, we’ve got the links in the show notes for 

you and these three sessions will cover all of the essential 
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Linear Algebra you need for ML. Linear Algebra Level 1 

will be on April 4th, Level 2 will be on April 17th, and 

Level 3 will be on May 8th. If you don’t already have 

access to O’Reilly, you can get a free 30-day trial via our 

special code, which is also in the show notes. 

 00:45:04 That's the one line main difference between Gradient 

Boosting and AdaBoost? 

Kirill Eremenko: 00:45:11 Sorry, no, we haven't gone into Gradient Boosting yet. 

The one line main difference between bagging, bootstrap 

aggregating, which is random forest, and boosting, which 

is AdaBoost, is the word adaptive, adaptive boosting. 

Jon Krohn: 00:45:26 Right. 

Kirill Eremenko: 00:45:26 You're adapting to boost the observations that you didn't 

predict well, that's what you're adapting. 

Jon Krohn: 00:45:34 Right. 

Kirill Eremenko: 00:45:34 It's a conscious method. Rather than, all right, let's rely 

on the law of large numbers, and get lots of votes or 

predictions, and average them out, like a democracy, in 

AdaBoost, it's a meritocracy. It's a conscious meritocracy. 

Let's adapt to consciously work on our mistakes, and 

then also, let's give not just an average, but a weighted 

average, because those are not performing well. Why 

would we consider them in our final average as highly as 

the ones that are performing well? 

Jon Krohn: 00:46:08 Nice. I actually didn't know about AdaBoost before, so 

great to hear about it. Thank you. 

Kirill Eremenko: 00:46:14 Yeah, it's not that popular these days, because Gradient 

Boosting blows even AdaBoost out of the water, but it was 

an important stepping stone. I like the history of how 

things developed. I thought I would mention it, and also, 
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for people's general understanding. For example, in the 

course that I mentioned, which you can get at 

superdatascience.com/level2, the number two, we don't 

talk much about AdaBoost, but we go into some detail on 

it. I think it's good to know the history of where things 

come from, and if it comes up in a conversation, you'll 

know. 

Jon Krohn: 00:46:49 Sure. 

Kirill Eremenko: 00:46:51 Now, we can move on to Gradient Boosting. We've laid the 

foundation. The difference between just bagging, or 

bootstrap aggregating, a blind democracy, nothing wrong 

about that, versus a conscious meritocracy, so to speak. 

Now, we can move on to Gradient Boosting. Gradient 

boosting was originally proposed by Jerome H. Friedman 

in 1999, and there's two papers you can find online. One 

is called Greedy Function Approximation: A Gradient 

Boosting Machine, and I think that was more of a lecture 

that he gave, because it's got 40 pages or something like 

that. The second paper you can find is Stochastic 

Gradient Boosting. This is the person who created it. 

What is Gradient Boosting, and how is it different to 

bagging, bootstrap aggregating, and AdaBoost? 

 00:47:45 The main thing with Gradient Boosting is that this time, 

we're not just going to adapt. We're going to actually be 

changing our sample. We're not going to be doing any 

bootstrapping. We are working with the original sample 

all the time. That's very important to understand. There's 

no bootstrapping in Gradient Boosting. What you do in 

Gradient Boosting is, we're going to look at Gradient 

Boosting for regression first. You have your 1,000 

customers. I can't believe this example stuck. That was 

just a random thing I wanted to do for the trees. 

 00:48:19 You have these customers, 1,000 customers that bought 

candles from your store. You want to predict the future 

http://www.superdatascience.com/771


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/771   
28 

spend of customers. Your target variable is your dollars 

spent. What you do is, you take as your first step... again, 

Gradient Boosting is again going to be an ensemble of 

models. Your very first model is just an average. It's a 

simple average. You take the average of all of the dollars 

that all of your customers spend, and let's say you get 

something like $57 for simplicity's sake. That's the 

average of all your customers' spend. Next, what you do is 

you calculate the errors. You look at, "Okay, $57 is my 

average," that is, of course, a terrible prediction, a terrible 

model. You just took an average. For some observations, 

you'll have an error, some observations will be lower, 

some observations will be higher. 

 00:49:14 You basically calculate the error for each one of your 

1,000 samples, and then you take those errors, whether 

the error is $2 or $20 or minus $100, you take all of 

those errors and you build a decision tree to predict those 

errors. The first model, it takes the average, works with a 

sample. The second model, which is our first decision 

tree, it'll work with all of the errors that you got as a 

result of the first model. Now, this decision tree will be 

structured in some sort of way. It'll make its own 

predictions, and now you will have, again, errors. 

 00:49:55 You will have errors of this decision tree's prediction, and 

some might have $5 error, some might have a minus $50, 

minus $100. Again, you look at all the errors of the 

predictions of this second model, which is a decision tree, 

and you use those errors. Again, you'll have 1,000 errors, 

in some cases it might be zero, but you'll have 1,000 

values, and you use those errors, and you make another 

decision tree. Your third model will also be a decision 

tree, and it'll predict the errors of the second model. Then 

you build a fourth decision tree, which will be predicting 

the errors of the third model. Then you build a fifth 

model, which is also decision tree, and you predict the 

errors of the previous model, and so on. You chain them 
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together. The key word here is, you're chaining models 

after each other. 

 00:50:44 The first one is an average, and then it's decision tree, 

decision tree, up to 100 times, however many decision 

trees you want. Each one is just focusing on predicting 

the errors. What's the point of that? Well, guess what? 

Now, as our final model, we're not going to take the 

average, we're not going to take the weighted average. As 

the final model, we'll take the sum. You'll take your first 

model, which is the average. You'll add the result of the 

second model, which is whatever the decision tree 

predicts for this kind of variable. Let's say you have a new 

customer come into your store, and you want to predict 

how much they will spend. The answer will be the 

average, which was $57, plus whatever the next model, 

model number two, which is a decision tree, whatever it 

predicts, plus whatever the next decision tree predicts, 

plus whatever the next decision tree predicts and so on. 

 00:51:32 You add all of that up, and because each time you are 

predicting the errors, now, your prediction is the average 

plus, what would the error be for this person that just 

came in? Okay, the error for this person is 57? Okay, 

based on their age, based on the income, whatever the 

decision tree is looking at, the error of this second of this 

initial model would've been minus $101. You need to add 

that. You go from 57 minus 101, I'm not that great. What 

is it, minus 44? Is that minus 44? Yeah, minus 44. Then 

the next model will be, what would the error have been 

based of that prediction, the previous one? The error 

would've been $50. Now you go up to $3, and then the 

next model says, the error at this point is about $27. 

 00:52:25 Now you go up to from $3 to $30, and so on and so on 

and so on. Then the final result is, this customer, based 

on their features and based on what the model predicts 

for them, this customer will likely spend $39 in our store. 
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That's how Gradient Boosting works. You're basically 

chaining models to constantly just predict the errors of 

the previous one, and that means in the resulting model, 

you need to just add them up. Each prediction will be a 

prediction of the errors, and in the end, you will get your 

final result. 

Jon Krohn: 00:53:01 Nice, very well explained. 

Kirill Eremenko: 00:53:04 I just had this idea, it's probably good to call the first 

model, the average, call it model zero, because otherwise, 

it's confusing. The first decision tree is the second model. 

The second decision tree is the third model. Model zero is 

your average, and then model one is a decision tree. 

Model two is your second decision tree, and so on and so 

on and so on. The final result is the sum of this chain. 

 00:53:29 As you can see, it's very different to what we had 

previously, in the bootstrap aggregating methods, which 

were bagging, basically a random forest, the way we took 

the average. It's also different to the boosting method of 

AdaBoost, where we took a weighted average of the 

models. AdaBoost is in between. It's used as bootstrap 

and it's used as aggregating, so it's a bootstrap 

aggregating method from the sense of how the samples 

are built, but it's a boosting method based on the 

concept. AdaBoost is a transitional, whereas Gradient 

Boosting is pure Gradient Boosting. There's no more 

bootstrapping. Straight into, use the same data set all the 

time, but you focus on improving, improving, improving, 

improving. 

Jon Krohn: 00:54:15 To summarize back, the random forest is random. This 

went into your democracy versus meritocracy example. 

With a random forest, you are randomly creating a whole 

bunch of decision trees, and the more that you create, 

you get this slight marginal improvement. When you go 

from 1,000 random decision trees to 1,001, there's this 
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very marginal improvement. The core idea with adaptive 

boosting was to not be randomly creating these decision 

trees, but to use some information, like which data points 

were misclassified previously, and let's overweight those 

in the subsequent model so that we're consciously 

iterating in the right direction adaptively, AdaBoosting. 

Gradient boosting takes us another level further by not 

just saying, "Let's focus on the data points that were 

misclassified. Let's look at the residuals, the specific delta 

between what the correct answer would've been and what 

the model predicted, and let's fix those residuals." You're 

focusing on where the most possible opportunity for 

improvement is, and that's why Gradient Boosting is so 

powerful. 

Kirill Eremenko: 00:55:38 Yep, absolutely. Great summary. A question that you, our 

listener, might have at this stage is, if you're focusing on 

residuals, why is it called Gradient Boosting? Why isn't it 

called residual boosting, or error correction or something 

like that? Well, we'll answer this question right now. The 

answer lies in the mathematical principles underpinning 

this algorithm. I'm going to be a bit more out of my depth, 

a little bit less experienced than Jon talking about this, so 

Jon, please feel free to correct me if you feel that 

something needs correcting. Basically, what happens is, 

the explanation we just looked at, where you look at the 

residuals and you build every next model in the chain to 

predict the residuals of the previous one, is correct, but 

it's a simplified explanation. The actual underlying 

mathematics of it is that you don't look at the residuals of 

the model. 

 00:56:38 This is how it works in proper mathematical principles, 

Gradient Boosting. Gradient boosting, take two. First 

thing you do is, you define a loss function. You choose 

what loss function you're going to use for this model. 

Then you will calculate the gradient of the loss function 

after each model is built. You have your first average, you 
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have your loss function, then, for every one of those 1,000 

points, you will calculate the gradient of the loss function, 

and you will use the next model in your chain. We agreed 

that the original model is model zero with the average. 

You've done the average, you've calculated the gradient of 

the loss function. By the way, if somebody needs a quick 

refresher on what a gradient is, a gradient is basically a 

vector of partial derivatives of the loss function. 

 00:57:28 You have a loss function, let's say it's based on two 

variables, X and Y, then the gradient will be a partial 

derivative of that loss function based on the variable X. 

That's your first coordinate in the vector, and your second 

coordinate is a partial derivative of the loss function 

based on the variable Y. If you have five independent 

variables, or five variables in your loss function, then it'll 

have five coordinates in the vector. That's very brief 

overview of what a gradient is. There is a cool video from 

Khan Academy, if anybody wants to get a refresher on 

what a gradient is. Really short, succinct, and gets to the 

point. Back to Gradient Boosting. You have model zero, 

which is the average. That's your prediction. Then you 

calculate the gradient of your loss function for every 

single one of those 1,000 points. Your next model, model 

number one, decision tree number one, is going to be 

built to predict those gradients that you've just 

calculated. After model one is built, you will calculate the 

gradient of the loss function for this model number one in 

every single one of your 1,000 points. 

 00:58:43 Now, model number two, decision tree number two is 

going to be built to predict the gradients that you've just 

calculated of model number one, and so on and so on and 

so on. That's why it's called Gradient Boosting. A 

gradient, it tells you in which direction your loss function 

is increasing the maximum, and the higher the gradient, 

the higher... sorry, it tells you in which direction the loss 

function is increasing from this point, and the higher the 
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gradient means the higher increase in this loss function. 

Your point is to minimize your loss function, and by 

predicting the gradients, that's what you're effectively 

doing, by chaining these models together. 

 00:59:22 Now, how does this reconcile with what we just discussed 

with the residuals? Well, it just so happens that this loss 

function for regression problems is chosen in a very 

conscious and deliberate way, and it's usually the simple 

squared loss function that is used. Basically, if you think 

of the mean squared error loss function, which is used 

for, for example, linear regression, let's say it's observed 

minus predicted squared, the sum of that, and for all the 

observations, divided by N, number of observations, that's 

an aggregate loss function. If you think of it for an 

individual observation, what is the loss function for an 

individual observation when you're using mean squares 

error? 

 01:00:06 Well, the individual observation's loss function is just 

observed minus predicted squared. That's the loss 

function for individual operation. In the case of Gradient 

Boosting, we're using the same loss function, it's called 

the simple square loss function, but we are just adding a 

coefficient at the start, which is one half. The loss 

function equals, for an individual observation, is one half 

of brackets observed value minus predicted value, and 

those brackets squared. When you take the gradient, or 

you take the derivative of that, the two, the differential of 

X squared is 2X, so the two comes out and it gets 

canceled out with the one half coefficient that you have at 

the beginning. It becomes observed. So the derivative of 

the loss function is basically observed minus predicted, 

which equals to the residual. So the loss function is 

chosen consciously and deliberately in such a way that 

the derivative of the loss function, which we're aiming to 

minimize with this whole method, that derivative of the 

loss function is the same as the residuals. And that's 
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where the actual mathematical explanation that we just 

went through reconciles with the simplified explanation 

we had earlier about the residuals. And I think that's 

really beautiful. 

Jon Krohn: 01:01:21 Nice, Kirill. All right, so that was all about regression. 

What's different in Gradient Boosting when we have a 

classification problem? 

Kirill Eremenko: 01:01:29 Okay, so for classification, Gradient Boosting is not as 

straightforward, is not as simple. The reason for that is, 

when we chain these models, we can't just think of it as 

adding up each... We'd still be adding up models, but you 

can't just think of it as simply as we did in the case of 

predicting the residuals, because in the case of 

classification, we're predicting probabilities. And if you 

start adding up probabilities from 100 decision trees, 

you'll end up with probabilities of over one. And basically, 

it's not as elegant. 

 01:02:02 The underlying core principles, so we're not going to go 

into detail on that. Again, check out the course if you'd 

like to learn more, but we're not going to go into detail on 

that. The main thing to take away about boosting or 

Gradient Boosting for classification is that the underlying 

concept is the same. You calculate the gradients, you 

define a loss function, and in the case of classification, 

what is normally used is called a binomial deviance loss 

function. You calculate the gradient of your... well, the 

first, the zero model, the model number zero is usually 

set, it's not at the average, it's usually set at 50%. So if 

you're, let's say, classifying between two categories, will 

churn, will not churn, has cancer, has not cancer, you set 

at 50%. 

 01:02:41 Sometimes if you're more advanced and you have 

reasons, you can set the baseline at higher, 75% or 25% 

or whatever else, but that's up to your specific use case. 
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So you set a baseline in the zeroth model, the original 

prediction is 50%, whatever you choose. And then 

basically you have a loss function. You will need to find 

the gradients of the loss function for every one of your 

observations, and then the next decision tree will be 

minimizing that loss function. And when you choose the 

binomial deviance loss function, which is, as I 

understand, typically used for classification problems in 

Gradient Boosting, what will happen is when you're 

getting to the gradients, when you're calculating the 

gradients, rather than probabilities, you will end up 

working with log odds. So it's a very interesting transition, 

and in the course we explored, it looks really cool. 

 01:03:41 So you want to predict probabilities, but what the 

decision trees are actually doing, what the chain of 

decision trees is doing, is it's predicting log odds, and that 

allows you to add them up. So you have the same 

principle. You will be adding up the predictions of each 

decision tree, but you won't be getting probabilities, you'll 

be getting a log odds. We're not going to go into detail 

what log odds are right now, they're related to 

probabilities. And once you add up all the log odds from 

your decision trees for your prediction, then you go from 

the world of log odds, you do an inverse operation, and 

you go back into the world of probabilities, and then 

you'll get your final probability. 

 01:04:20 So that's just a quick teaser for what classification looks 

like in Gradient Boosting. Again, if you want to dive into 

detail, check out the course that we have, Machine 

Learning Level 2 at SuperDataScience, or feel free to do 

this research on your own. But yeah, basically the 

takeaway is underlying concept of gradients is the same, 

and it works as well for classification as it does for 

regression. 
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Jon Krohn: 01:04:47 Nice. Yeah, as you started to introduce the classification 

variant of Gradient Boosting, you said it's not as simple, 

but actually it wasn't that much more complicated either. 

You're using log odds, you just got to add that in. 

Kirill Eremenko: 01:05:01 Man, log odds. For me, it took a while to get my head 

around log odds. You're probably right, it's not that 

complex, but it's just harder to visualize. I like the 

regression alternative because you're visualizing this 

chain, you're adding up, it makes sense. You're predicting 

errors, you're constantly reducing this error through your 

prediction. Whereas this one is like log odds, you have to 

go back to probability. It's not as easy to just have a 

picture in your head. 

Jon Krohn: 01:05:26 Yeah. Yeah, yeah, yeah. Nice. All right, so I think then 

you've now gotten through all of the Gradient Boosting, 

the "vanilla." Everything that you said so far sounds 

super amazing, but now I'm adding this vanilla adjective, 

because it turns out today there's been several variants 

on the regular vanilla Gradient Boosting that you've 

described to get even more powerful results, I think. 

Things like XGBoost, LightGBM, CatBoost. You want to 

dig into those? 

Kirill Eremenko: 01:05:58 Yeah. Okay, let's do it. So all of that was foundational and 

very important. However, up until 2014, Gradient 

Boosting, again, I'm not an expert or researcher, or 

historian for that matter, but my impression is that 

Gradient Boosting was purely or mostly theoretical. It 

wasn't very applied, very applicable, because it was slow. 

Because when you're building these hundreds of decision 

trees, you have to find the splits. 

 01:06:28 Imagine you have, for example, for salary, you have 1,000 

estimated salary. So with only to have just 1,000 people 

in your sample, you need to make that split. How does 

the decision tree, one of the decision trees, how does it 
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know that it needs to split at 47,000 more or 47,000 less? 

Why is it not 46,500? Why is it not 93,000? Why is it not 

12,000 or $12,534? How does the decision tree know? 

And if you have 1,000 samples, of course there's 

optimization techniques built in, but it has to look 

through a lot of options to find out where is that best 

split, which split is going to give me the best result? 

Because it only can choose one. At each ranch, it can 

only choose one split. Even if you have just three 

variables, it has to look through three variables and 

through all possible splits inside these variables. So 

theoretically it's a cool algorithm, but unless you find 

ways to speed it up, it's just going to stay theoretical and 

you're going to get bogged down. It's very slow. And that's 

exactly what happened in 2014. A gentleman named 

Tianqi Chen, I hope we're pronouncing that right, as part 

of the... What is it called? OD- 

Jon Krohn: 01:07:55 You're basically guaranteed to not be pronouncing that 

right, because you're not going to know how to do the 

tones. But I guess- 

Kirill Eremenko: 01:08:00 Yeah. Yeah. 

Jon Krohn: 01:08:01 ... yeah. Tianqi Chen is a good guess for us people that 

can't hear tones. Unless, can you hear? Chinese tones, is 

that something that you've studied? 

Kirill Eremenko: 01:08:11 No. No, I have no idea. So I apologize if I mispronounced 

that. I'm doing my best. I was just looking up the 

abbreviation for XGBoost. So XGBoost was originally 

introduced in 2014 as part of this community called 

DMLC, I think it's on GitHub, called Deep Machine 

Learning Community. It was produced by this gentleman, 

Tianqi Chen, who I believe was a student at the time 

maybe, or he's a professor right now. I'm not sure which 

university. I would guess Carnegie Mellon. I'm not sure. 

But basically he produced this as part of this open source 
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community in 2014. And the whole principle of XGBoost, 

the XG stands for eXtreme Gradient Boosting. So the 

whole principle, as I understand, was to come up with 

ways to speed it up so we can actually use it in 

applications and not leave it as a theoretical algorithm for 

the rest of time. Yeah, go ahead. 

Jon Krohn: 01:09:19 Yeah, you remembered correctly, your instinct was right. 

Tianqi is an assistant professor at Carnegie Mellon, 

though it seems like they're also a co-founder and chief 

technologist at something called OctoML. So they're one 

of those amazing people who's bridging academia and 

practical data science. OctoAI is running, tuning, and 

scaling the models that power AI applications. 

Kirill Eremenko: 01:09:44 We should have them on the show, Jon. 

Jon Krohn: 01:09:45 Yeah, it's a great idea, for sure. 

Kirill Eremenko: 01:09:47 Sounds like my big [inaudible 01:09:48]. 

Jon Krohn: 01:09:49 That is certainly the kind of guest I love. We've had quite 

a few guests, yeah, where they do both of those things. 

Where they're academics, right on the cutting edge of 

developing machine learning, but then simultaneously 

they're at the cutting edge commercially. That is one of 

my favorite guests. You're exactly right. 

Kirill Eremenko: 01:10:08 Yeah. If anyone listening knows Tianqi Chen, author of 

XGBoost, please shoot him an email and introduce him to 

the podcast. We'd love to talk to him about it. That'd be 

cool. Anyway, we are digressing. So after the method 

came out in 2015, it became very popular. There was a 

follow-up research paper from Tianqi Chen, which you 

can find on archive. It's called XGBoost: A Scalable Tree 

Boosting System. That was published in 2016. 
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 01:10:40 Okay, so after the method came out, it became super 

popular. For example, in 2015, the year after it came out, 

out of the 29 winning solutions on Kaggle, 17 of them 

used XGBoost. I think eight of them were pure XGBoost, 

and nine of them were a combination of XGBoost and 

deep learning. But nonetheless, 17 out of 29, more than 

half of the winning solutions in Kaggle, literally the year 

after, were already using XGBoost. That's how popular it 

was. 

 01:11:11 Also, on the KDNuggets Cup in 2015, again, the next 

year, XGBoost was used by every winning team in the top 

10. How cool is that? And that's because, again, I'm not a 

researcher, but as I understand, XGBoost was the 

transition from theoretical Gradient Boosting, which 

sounds amazing but it's very difficult to apply because of 

its computational inefficiency and demand for resources 

and other things, it was the bridge to applied Gradient 

Boosting. 

Jon Krohn: 01:11:46 Nice. Did you mention and I just didn't quite catch it, that 

XGBoost stands for eXtreme Gradient Boosting? 

Kirill Eremenko: 01:11:52 Yeah, yeah, yeah. Yeah. 

Jon Krohn: 01:11:52 Oh, you said that? 

Kirill Eremenko: 01:11:52 Yeah. 

Jon Krohn: 01:11:53 Well, there you go. Now I reiterated it, totally on purpose. 

Kirill Eremenko: 01:11:57 Yes, eXtreme Gradient Boosting. Okay. And to this day. It 

wasn't just 2015. To this day, XGBoost, and LightGBM 

and CatBoost, which we'll talk about just now, are some 

of the top used non-deep learning algorithms. So when 

you look at, I think, Christian Chabot... Is it Christian 

Chalet or Chabot? The creator of Keras, what is his 

name? 
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Jon Krohn: 01:12:24 Oh, Francois Chollet. 

Kirill Eremenko: 01:12:24 Francois. Francois Chollet. I was thinking of the founder 

of Tableau. Francois Chollet did a post, I think in 2018. 

Yes, it was 2018. He asked the top first, second, third 

place teams on Kaggle which methods they used between 

2016 and 2018, and it turns out the first place is Keras, 

which is deep learning, but the second place is LightGBM, 

third place is XGBoost. So even to this day, they're still 

being used. 

 01:13:00 Anyway, so let's dive back into what is great about 

eXtreme Gradient Boosting that wasn't so great in normal 

Gradient Boosting. So first thing, it uses special kinds of 

decision trees. The way the decision trees... in normal 

Gradient Boosting, the way they're constructed is by 

greedily, is a technical term, greedily choosing the one 

split that maximizes the reduction in loss function across 

all possible splits in each step. It looks for the one, the 

maximal, the best split. Whereas in XGBoost, it uses 

something called similarity score, and then it uses a gain 

calculation. So basically it looks at... Okay, so the way to 

think about this without going into the mathematics is, 

how similar are the observations? So we have, let's say, 

our first split. We have those 1,000 observations. This is 

tree number one. We're looking at the errors. We have 

those 1,000 errors. How similar are those errors between 

each other? You calculate similarity score, and then you 

can have the split in different areas. 

 01:14:06 So for each split, and it has an optimized way of not going 

through all these possible splits. For example, the salary 

variable. There's an optimized way that it looks at fewer of 

them with a certain step, but we're not going to go into 

detail on that. But basically it looks at, okay, so if I do the 

split here, what's the similarity score on the left of the 

split and on the right? So if I do a split in this branch, I'll 

end up with two leaves. What's the similarity score of the 
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observation that will end up in the left leaf, and what's 

the similarity score between the observations, between 

among each other, of the ones that will end up on the 

right leaf? Then you calculate a gain, which is calculated 

as... you want similarity to be higher. The higher the 

similarity, the better. 

 01:14:53 The gain is calculated as similarity of the left leaf, plus 

similarity of the right leaf, minus the similarity that you 

originally had in the leaf that you're currently splitting. 

What that does, is if the gain is greater than zero, that 

means that you're going to actually gain something from 

doing the split. If it's less than zero, you're not going to 

gain anything. Also, you want to find the split with the 

highest gain. So that's number one. They're a special kind 

of decision tree. The way they think about the splits is 

through similarity scores and gain calculations. 

 01:15:25 The second thing is tree pruning. So you build this tree. It 

builds it depth wise, so it goes from level one to level two 

where you have your branch. You split into two areas, two 

splits. Then you split again, you split into four. Then you 

split again, you split into eight. So it builds it depth wise, 

and then it prunes it. So pruning is like cutting it, going 

from the bottom to the top and looking at the gain that 

you have in each one of the leaves, the gain that we just 

talked about. And then you have a hyperparameter 

gamma. So when you're building XGBoost model, you'll 

see a hyperparameter gamma. That is for this pruning. 

 01:16:02 So gamma, let's say you set it to 100, or let's say you set 

it to 110, for example, just not to have round numbers. 

So let's have 110 as your gain, or your gamma. If your 

gain in a certain leaf is less than gamma, then you will 

remove that leaf, and then you'll go to the next one, go up 

the branch. If the gain is, again, less than gamma, you'll 

remove that leaf, and so on, until you hit a leaf with a 
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gain more than gamma. That way you reduce the size of 

your decision trees. That's called tree pruning. 

 01:16:33 Next one is regularization. XGBoost has built in 

regularization, so it's not something you have to add 

separately. It has built in L1 and L2 regularization, and 

basically, without going into detail, regularization helps 

with overfitting. So it helps with preventing overfitting. 

Next one is sampling. As we discussed earlier, XGBoost or 

Gradient Boosting, it uses all of the samples. So you have 

1,000 samples, there's no bootstrapping you every time. 

So the first time, model zero used 1,000 samples, you 

take the average. With the next model, you take 1, 000 

errors and you build that model. The next model, you 

take 1,000 errors of that model, and so on, and so on, 

and so on. 

 01:17:23 XGBoost has built in sampling of rows. So you can tell it 

that I don't want to use 100 rows. There's a 

hyperparameter for this. I want to use 80% of the rows. 

So now each tree will only see a random 80% sample. 

Let's say tree number one, we'll see 80% of the rows, it'll 

be built on that. Tree number two, we'll see a different 

80% of the rows be built on that. Tree number three, and 

so on, so on. Also does sampling of columns. As we 

discussed with Jon, you can tell it to sample 80% of the 

columns, or whatever percentage you want, or you can 

build it on all of them, but there's a hyperparameter for 

sampling columns. 

 01:17:59 There is a built-in cross-validation, k-fold cross-

validation, if you want. Also, without going into detail on 

the technicalities of this, XGBoost was developed with 

high scalability and performance in mind. So there are 

additional optimizations specifically for hardware and for 

accelerated computing, basically, and also it supports 

distributed computing to handle very large datasets. So 

XGBoost was built with all those things in mind, and as a 
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result, it's very efficient and it allows it to do more 

optimization cycles in the same period that a different 

model will do. That's what makes it so incredibly 

superior. I think it was actually Francois Chollet, if I'm 

not mistaken, that said that, "The winning teams are the 

ones that..." This isn't Kaggle, but of course the same 

thing applies in industry. The best models are the ones 

where you can iterate more times in the same given time, 

so you want your model to be super efficient, super fast. 

Jon Krohn: 01:19:05 Yeah, it's super fast. That's also key for when you get 

your model into production where it's ideal, obviously, if 

your costs are lower, you don't need as much compute to 

be able to support lots of users using your model in real 

time in that production infrastructure. So, valuable for 

sure. 

Kirill Eremenko: 01:19:22 All right, so that's XGBoost. Let's talk about LightGBM, 

do a quick overview, and CatBoost. Okay, so LightGBM, 

introduced by a team at Microsoft in 2017, a few years 

after XGBoost. You can find a paper. The paper is called 

LightGBM: A Highly Efficient Gradient Boosting Decision 

Tree. And interesting comment, in 2022, LightGBM was 

dominant out of the gradient boosted decision trees 

models among Kagglers. So even already, according to 

that poll that Francois Chollet did, it was already ahead of 

XGBoost by 2018. More winning models on Kaggle were 

using LightGBM. 

 01:20:11 So what's super cool about LightGBM? Well, LightGBM 

takes what we just discussed, that concept Jon and I just 

mentioned about more iterations, more cycles, iterative 

cycles in a given time, takes it to the next level. I don't 

have a reference for this, but LightGBM is considered to 

be, by some blog I read somewhere online, it's considered 

to be 20 times faster than XGBoost. So it sacrifices 

accuracy for speed, and does so consciously and in a few 
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methods, which we'll talk about now. It sacrifices some 

accuracy for a huge gain in speed. 

 01:20:50 Okay, first thing. The biggest, coolest thing about 

LightGBM that you need to know, is that the trees use 

histogram-based splits. So think about it, our column, 

with salaries. We have salaries of 1,000 people, estimated 

salaries, that we've estimated. The salaries can range 

from zero, somebody who's currently unemployed, not 

working, can range to maybe 100... I don't know what 

salaries... it could be 200,000. What was the risk salary 

for somebody doing machine learning at... what's it 

called? Netflix? Or Anthropic? 600,000 I saw. Like crazy, 

to the research- 

Jon Krohn: 01:21:29 Yeah, base pay. 

Kirill Eremenko: 01:21:29 Let's say for argument's sake, it goes up to $150,000. But 

in that range you have 1,000 different values. It can be 

$67 and $232.23. There's a huge variability of salary in 

that. There's lots of options that salary take. What if you 

had not 1,000 customers, or you had 10,000 customers? 

There's now potentially 10,000 different values, 10,000 

places you could split this dataset. 

 01:21:58 But what if you take all of these salaries and you put 

them into a histogram, basically you bin them? So you 

create bins with a $10,000 step. So your first bin is from 

zero to $10,000. Your second bin is from $10,000 to 

20,000, then 20,000 to 30,000, and so on. So you end up, 

if your salaries are between zero and $150,000, and your 

bin size is 10,000, you end up with 150 bin. 150? No, you 

end up with 15 bins, right? 15 bins. 10 bins gets you to 

100,000. Yeah, 15 bins total. So you end up with 15 bins, 

and now all of your observations, all of your customers 

are put into this histogram or end up in one of the bins. 

And now what LightGBM does, is it doesn't split on the 

salary, it splits on the bins. So now it has only 15 
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options, or 14. If you have 15 bins, you only have 14 

options where to split to make that split for salary. 

 01:22:56 It's so much faster, right? Instead of looking at 1,000 

different options, you're looking at 15. And if you have, 

let's say, 10,000 customers, instead of looking at 10,000 

options, hypothetically, you can only still look at 15. It 

doesn't change. So this histogram-based split, of course, 

it's less accurate, of course, you can't now split 

somewhere in the middle of a bin. It has to be on the 

borders of a bin. You can only split at 50,000 or 60 or 70 

or 80, you can't split at $63,000, but you're sacrificing 

accuracy. The whole idea behind LightGBM, in my view, 

is sacrificing accuracy for speed. That's one of the biggest 

parts. 

 01:23:34 The next one is really fun. A bit more complex, but really 

fun to understand. It's called Exclusive Feature Bundling. 

Basically, this is reducing the number of columns at all 

costs. At all costs, as in, whatever it takes, let's reduce 

the number of columns. The authors of LightGBM, if you 

read the paper, they say that most of the datasets 

available in the real world in businesses have sparse 

data, have sparse columns. A normal column like salary, 

estimated salary, is a dense column. You've estimated 

salary for every single observation. A sparse column is 

that column that mostly has zeros. Here and there 

sometimes it'll have some value. 

 01:24:18 I was thinking about this last night of how to illustrate 

this idea that why would most datasets have sparse 

columns? Well, let's look at a couple examples. Let's say 

you have a dataset which says, "Okay, these are our 

1,000 customers, and you have five sales representatives 

in your candle store that they can call. And each sales 

representative has a column, sales rep one, sales rep two, 

sales rep three. And you're recording, if a customer called, 

which sales representative did they speak with, and for 
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how many minutes?" So basically, sales rep one will have 

number of minutes for each customer they spoke with. It 

might be five minutes for customer one, it might be 120 

minutes for customer number 733, et cetera, et cetera. 

 01:25:09 But for most customers, it's going to be zero. There's no 

chance a sales representative spoke with... They only 

spoke with maybe, out of your 1,000 customers, they only 

spoke with 12 over the course of a month or something 

like that. And then sales rep two will have values for other 

customers, and so on. Most of the values in these 

columns will be zero. 

 01:25:32 Let's look at another example, just to illustrate the point. 

You could have, for example, trucks. At a mining 

operation, you have 1,000 trucks and they can only do 

one of three jobs, or one of five jobs, and the jobs are the 

columns. So then you would have how much time or how 

many kilograms of ore did that truck do on that job? And 

then there could be another column for maintenance. For 

example, how many minutes did the truck spend on 

maintenance? And so on. So there can be a lot of columns 

that have mostly zeros and some values in it. 

Jon Krohn: 01:26:07 Big surprise that our Australian podcast guest is talking 

about ore mining. 

Kirill Eremenko: 01:26:13 Yes. Yes, that's true. I actually worked on a project 

relating to that for six months back at Deloitte. It was 

really fun to go fly out to the middle of nowhere and be on 

this analytics project. Really cool. 

Jon Krohn: 01:26:29 Putting an occasional one in a column that's otherwise all 

zeros. 

Kirill Eremenko: 01:26:33 Yeah, yeah. But in this case, we're looking at columns. 

It's because it's easier to talk about regression. Rather 

than classification columns, we'll look at columns with 
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continuous variable, continuous values. So that was a 

second example of a sparse column. You can imagine loss 

of sparse columns in any kind of industry, like medical 

datasets, like which doctor this patient saw or procedures 

they had. You can imagine columns with time sheets of 

employees and things like that. 

 01:27:05 Oh, you had a great podcast with the person from Spotify. 

Remember that podcast? 

Jon Krohn: 01:27:12 Spotify? Oh, yeah. Erik Bernhardsson. The guy- 

Kirill Eremenko: 01:27:17 Erik Bernhardsson. 

Jon Krohn: 01:27:18 ... who developed the Spotify [inaudible 01:27:19]- 

Kirill Eremenko: 01:27:19 What episode number was that? That was such a good 

podcast. I loved when he was talking about... He was 

talking about sparse columns, because they had a huge 

spreadsheet or dataset at Spotify where each column is a 

song and each row is a customer, and each value is how 

many minutes of that song did that customer listen to it? 

It's mostly zeros because you don't listen to all of the 

songs. It's a very sparse dataset. 

Jon Krohn: 01:27:47 Yeah, that was episode number 619. Yeah, it is definitely 

a great episode with Erik Bernhardsson. He's an amazing 

speaker, an amazing technologist, an amazing 

entrepreneur. 

Kirill Eremenko: 01:27:57 Yeah, I loved that episode. So there's sparse datasets all 

over business and industry. We don't see them that much 

in practical practice tutorials or examples, and that's why 

it's important to do labs, like live labs or workshops, 

which expose you to these kind of real world scenarios. 

But they exist and they're all over the place. 
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 01:28:17 What LightGBM does, is it... we're not going to go into 

detail on this, but basically it combines sparse columns 

into fewer columns. You might have 100 sparse columns. 

It has a method for combining them, even if they're 

talking about different things. One could be talking about 

salaries, another could be talking about kilograms, 

another one could be talking about, I don't know, time. It 

has a way to combine them into, from 100, you might cut 

it down to five or four columns. And that's very beneficial 

for Gradient Boosting decision trees and other methods. It 

really speeds up the decision tree building process. 

 01:28:57 We talked about sacrificing accuracy. The way it sacrifices 

accuracy is that in some cases it will combine... like in 

some cases, a row might be more populated than other 

rows. It might have values in a lot of these columns. Well, 

LightGBM will cut out, drop some of the values in order to 

achieve this combination. So we'll reduce accuracy by 

allowing data loss, but at the same time, the speed will go 

up. So that's called Exclusive Feature Bundling. 

Jon Krohn: 01:29:27 Nice. 

Kirill Eremenko: 01:29:28 Good. Cool. Next one is Gradient-Based One-Side 

Sampling. This is a really cool one. 

Jon Krohn: 01:29:33 Oh, yeah. When you say next one, it's another... We've 

had a few of the key ideas behind LightGBM, which also, 

the etymology of that Light Gradient-Boosting Machine is 

what GBM stands for there. 

Kirill Eremenko: 01:29:48 Oh, great. Yeah, yeah, that's right. 

Jon Krohn: 01:29:51 So Light, the idea that it's so much faster, 20 times faster, 

as you've said, relative to XGBoost, which already was 

super fast relative to the vanilla Gradient Boosting that 

you went into. So you have been enumerating most 

recently the main ideas behind how LightGBM is 20 times 
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faster than XGBoost. The first one was histogram-based 

splits. The second one was Exclusive Feature Bundling. 

And now you're going to go into a third one, which is... 

Kirill Eremenko: 01:30:23 Gradient-Based One-Side Sampling, or GOSS, G-O-S-S, 

for short. It sounds complex. It's actually very simple. 

Based on what we discussed, it'll be very easy to get your 

head around it. Basically, once you're building a decision 

tree, you have the gradients that you want to predict and 

you want to reduce your loss function. Instead of building 

a decision tree for all of the observations, right? Or 

instead of sampling 80% at random like XGBoost can do, 

why don't we be smart about it and why don't we look at 

these gradients? So we have 1000 gradients. Let's order 

them from largest to smallest, and let's take the top 20%, 

so top 200 gradients and use them plus of the remaining. 

So that's a hyperparameter A and then there's a 

hyperparameter, we'll call it B. Then you have the 

remaining 80%, the remaining 800 gradients of them. 

Just to have a representative dataset, take a random 

10%. So take a random 80. So as a result, you will have 

200 observations with the highest gradient plus 80 

observations random ones with lower gradients, and you 

have now a sample of 280. And you're going to build a 

decision tree based on that. 

 01:31:46 And why is that? Of course, you're sacrificing accuracy. 

You're using fewer rows. But you're gaining a lot of speed, 

and you're not sacrificing that much accuracy because 

you're taking the top 20% gradients that you need to 

improve anyway. So why worry about the 80-20 rule, 

right? Let's improve these 20% gradients 'cause they're 

the highest. So that's what gradient-based, and it's called 

one side sampling because you're taking the highest 20% 

of the gradients. So in total, if your parameters are 20% 

and 10%, you'll end up with 28% of your dataset. So 

that's gradient based, one side sampling, that's the third 

main idea behind LightGBM. And the fourth one is called 
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leaf-wise tree growth. So XGBoost and normal grain 

boosting have depth-wise tree growth. So you start at 

level one, the branches, you have an if-else condition. 

Then you have two branches, then you split each one of 

those into four. 

 01:32:40 So you get four branches in the total. Then you split that, 

you get eight and so on. So it keeps going from top to 

bottom. At each level, this splits on both sides, on all of 

the sides. Whereas LightGBM approaches this in a 

smarter way, it's like, "Why should we build such a 

massive decision tree? Let's do one leaf at a time." So at 

the start, you split into two branches. Then you have one 

on each side, right? So now, instead of splitting both, you 

only split the one that will give you the best result, the 

best improvement for your model. So the left side or the 

right side. Let's say you split the right side, now, you have 

three leaves in total instead of four. Now, you split one of 

those leaves. 

 01:33:25 Now, after this split, let's say you split the most bottom 

on the left, right now, you'll have four leaves in total. So 

you're adding one leaf at a time, increasing the number of 

leaves by one because you're splitting one leaf at a time. 

Whereas in the other one, in the XGBoost, you're 

doubling your number of leaves every time. And the way 

that this can be beneficial is in LightGBM, you'll have a 

parameter of maximum number of leaves. So your 

maximum number of leaves might be like 30. And so 

instead of getting there by doubling every time, you're 

getting there in a more conscious way. And your decision 

tree will look very different because you're using the best 

splits every time. So that was the fourth and final main 

idea behind LightGBM that makes it sacrifice a bit of 

accuracy for a huge gain in speed. 

Jon Krohn: 01:34:14 Nicely done, Kirill. You clearly know this stuff well. All 

right, so we've had of the specialized real-world Gradient 
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Boosting approaches that we see lots of winning 

competitions that people talk about. Absolutely, XGBoost, 

LightGBM more recently in the last couple of years. And 

the final one, CatBoost is one to definitely talk about. And 

that is also actually one. I've done a standalone episode 

on CatBoost before. 

Kirill Eremenko: 01:34:39 Oh, wow. Cool. 

Jon Krohn: 01:34:41 Yeah. Episode number 694. It was just a Five-Minute 

Friday episode. You understand it a lot better than I do, 

though. I need notes. 

Kirill Eremenko: 01:34:49 Let's see. Let's see. Please correct me if you find anything 

out of order. All right. So let's talk about CatBoost. 

CatBoost Stands for Categorical Boosting. It was 

introduced by a team at Yandex in 2017. A paper is called 

CatBoost, unbiased boosting with categorical features. If 

you want to have nightmares of mathematical formulas, 

have a look at that paper. It is so heavy on math. So let's 

go through the main ideas right now. And there's only 

just two main ideas that I wanted to highlight. There's, of 

course, more to the algorithm, but these are two main 

ideas. The name categorical boosting is that it deals very 

well with categorical features. So if you have features, 

columns in your dataset that are categorical, it handles 

them automatically. A quick note is that LightGBM also 

handles... So XGBoost doesn't handle them 

automatically, you need to one-hot encoding. 

 01:35:49 LightGBM handles categorical variables automatically. 

Probably avoid doing one-hot encoding with LightGBM. 

What you need to do with LightGBM is you need to 

convert your categorical variables to integers and point a 

LightGBM at the categorical variables and it will deal with 

them, but it's not as good as CatBoost. So CatBoost is 

extremely adept at dealing with categorical variables and 

it does it automatically on the fly. How does it do it? Well, 
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let's talk about one-hot encoding. Let's say we have a 

dataset with your customers, and your 1000 customers 

are from two different countries. They're from the UK and 

from France, right? So you have a column where it says 

country and it's UK, France. UK, France, France, France, 

UK and so on. So what you're going to do with one-hot 

encoding is you're going to replace that column because 

machines, normally, can't deal with categorical variables 

like words. So you want to put numbers in there. 

 01:36:54 So you're going to create one-hot encoded columns, 

basically dummy variables. You're going to replace, you 

create two columns, one for UK and one for France. And 

so whenever the customer is from UK, it'll be one in the 

UK column, zero in the France column. And whenever the 

customer is from France, it'll be zero in the UK column, 

one in the France column. And then actually, you will 

drop the second column. You want to avoid something 

called the dummy variable trap because one column is 

enough to encode two categories. So you'll just have one 

column, for UK one or zero, which means in France. But 

if you have, let's say three countries, France, UK, 

Germany, you will have two one-hot encoded columns. If 

you have 10 countries, you will have nine one-hot 

encoded columns or dummy variables. 

 01:37:41 And as you can see, as the number of categories grows, 

the number of columns explodes. And that is very bad for 

decision trees because they have to think about more 

columns which they need to consider. That's kind of the 

opposite of what LightGBM was doing by combining 

sparse columns. So that can be bad for decision trees. 

Also, there's other reasons why one-hot encoding is not 

great for decision trees. For example, it's hard to assess 

the importance of the feature country. Like you'll end up 

with, let's say, nine columns for different countries. You 

can assess how important is Germany or how important 

is France, yes or no in your final result. But it's hard to 
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assess how important is country overall. Another reason 

that it's bad is, for example, for decision trees, if you split 

your countries or your categories into different columns 

with one-hot encoding, you can't make a split in your 

tree. 

 01:38:39 Let's say the if-else condition, you can only say, "Is it 

France, yes or no? Is it UK, yes or no? Is it Germany, yes 

or no?" You can't say. " If it is UK or Germany, go left. If it 

is France or Monaco go, right?" You can't do that. So it 

limits the splits, the decision trees can do. Also, you get 

loss of ordinality. Let's say you have a categorical column 

with high school bachelor, master's, or PhD degrees. If 

you split into one-hot encoded columns, there's no longer 

that ordinality that high school comes before bachelor, 

bachelor comes before masters, masters come before 

PhD. You've lost that data, that information and so some 

other things. So basically, there's reasons why one-hot 

encoding is not the best for decision trees. Just as a note, 

one-hot encoding is actually a great method for certain 

algorithms such as linear regression algorithms and 

algorithms based on dot product, I think. 

 01:39:33 That's where it works really well, like neural networks. 

That's where one-hot encoding is very, very relevant, 

works well, et cetera. Decision trees, not so much. So 

there's a different approach to how you can... There's 

actually many ways how you can encode categorical 

variables, it's just one-hot encoding is the one we most of 

the time use and that's why we're so familiar with it. 

There's an approach called target encoding, and it wasn't 

introduced... It's separate to CatBoost. CatBoost uses a 

special type of target encoding. But in general, what 

target encoding does is you take your column, let's say, 

we have Germany, France, and the UK in our country 

column for our customers. And then you look at the 

target variable, and the target variable is how much did 
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they spend in your store. So the "What we've been 

predicting this whole time?" 

 01:40:20 For target encoding, the simplest way of doing it is you 

take all of the rows that have Germany and you take the 

average of your target, let's say it's $57.32. Then you take 

all of the rows that have France and you take the average 

of your target, let's say it's $98. And take your older rows 

that have UK and you take the average of your target, 

which could be $125. And then in your categorical 

column, you could replace the word Germany with 

$57.33, whatever it was. Let me write that down, 57 and 

33 for Germany. For France, you replace it with whatever 

we said, I forgot. So let's say $92.50. And for UK, you 

replace it with $125. It's a bit mind-blowing when you 

think about it because you're replacing words or 

categories with continuous variables. The average of your 

target is mind-blowing for that reason. Well, yeah, the 

second reason mind-blowing is your... Well, we'll get to 

that in a second. 

 01:41:29 So why are we replacing categories with continuous 

variables? Like instead of Germany, it's $57.33. France is 

92.50, UK is 125. Well, it's called target encoding because 

now, you're taking and substituting the category for the 

relationship that the category has to the target. So there's 

clear relationship that Germany has a lower average 

target than France, and that has a lower average target 

than the UK. And all you're doing is you're taking the 

average of your target and it's substituting the words of 

the category with that average. And the one thing to 

remember about machine learning is it doesn't have to be 

perfect as long as it works. And this works, this really 

works and helps you split your decision trees better. 

 01:42:18 One thing that you might be wondering and rightly so is 

that "Hey, but we're taking the target and we're putting 

the value from what we're about to predict into our 
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features." So we have, it's called data leakage, right? So 

you're leaking information that you want to predict from 

your dependent variable into your independent variables 

using target encoding. And there's certain ways of 

combating that. For example, there's k-fold target 

encoding, there's weighted target encoding, there's k-fold 

weighted target encoding. We're not going to go into detail 

on that, we talk about that in depth in the course. But 

there are ways of combating that and reducing the data 

leakage to some extent. And this is where we get to 

CatBoost. The way that CatBoost deals with this problem 

of data leakage is it looks at one of two things. 

 01:43:13 If your data has a timestamp column, basically a column 

that says in which order these observations were 

recorded, then it will use that, it will order your data 

based on the timestamp column or based on the time 

data, whatever you have, from the earliest to the latest. 

And so basically, what it will always do is it will take a 

row. For example, let's say row number 50 is France, so it 

will take the average of all of the rows that had France 

before it. So from row 1 to row 49, it'll look at all of the 

rows that have France and it'll take the average of the 

target for those 49 rows and put it as the target encoding 

for France in row 50. And then it'll go to row 51, and let's 

say it says Germany. So for that Germany, for row 51, it 

will look at all of the rows between row 1, row 50 that had 

Germany as the category. It'll look at the average of the 

target and it'll use that average as a target encoding in 

row 51. 

 01:44:16 So you're never looking at the value of the actual target of 

the row you're encoding, you're always looking at the rows 

that came earlier. And you're not leaking data because 

those rows actually came earlier in real life. There's a 

cause and effect. They happened earlier, so you're fine. 

You're allowed to look at that data in your target 

encoding. So that's the simplest option. Second option is 
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if your data does not have a timestamp column or does 

not have some order in which the columns came. What 

CatBoost will do is it will shuffle your rows randomly and 

it'll do the same thing. You'll basically pretend that there 

is a timestamp column. And it'll go down, and it will look 

at the previous rows and use the average as a target 

encoding for this row, and the average will be calculated 

on all the previous rows. It's a bit more complex than 

that, we won't go into detail on that. 

 01:45:10 There's four permutations, so it shuffles your data four 

times. And then it uses these permutations, three of them 

in one way, the other one in a separate way. So we won't 

go into detail on that. But the point is it uses something 

called ordered target encoding, and it replaces a 

categorical variable with that. There still potentially can 

be data leakage to some extent with any kind of target 

encoding, especially if you're shuffling rather than using a 

data timestamp column. But again, the big takeaway for 

me, anyway, from all of these Gradient Boosting methods 

and their optimization techniques is that it doesn't matter 

if it's not perfect, machine learning doesn't have to be 

perfect. It has to give it results. 

 01:45:55 And even if there's some data leakage, who cares? If your 

model works. It's not perfect, but it works. It gets you the 

result. It works on the test dataset, it passes your k-fold 

cross validation. Who cares that there's a bit of data 

leakage, or a bit of loss of data, or a bit of inaccuracy? As 

long as it works. And that's what these Gradient Boosting 

methods is so good at is it that trade off of, "All right. We 

have Gradient Boosting, which is theoretical, what's the 

point of that?" Let's do some trade-offs. Let's make it 

faster. Less perfect, but faster. And boom, we get amazing 

results. 

Jon Krohn: 01:46:27 Wow. Yeah, you definitely know this way better than I do. 

I just learned a ton about CatBoost. So all of those are the 
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main ideas for why CatBoost works so well for categorical 

data. As a Gradient Boosting algorithm, I think it's the 

obvious go-to choice for working with categorical features. 

And yeah, so you talked about how it doesn't use the 

typical one-hot encoding that you would get with a 

regression model, you combat data leakage, you have all 

those permutations. And yeah, that's how it's so powerful. 

Kirill Eremenko: 01:47:05 Perfect. Yeah, exactly. And the second reason why 

CatBoost is powerful is that it can... Excuse me. The main 

idea about CatBoost is it's very straightforward, very 

simple. Yeah. 

Jon Krohn: 01:47:17 Like other than the categorical part. So like [inaudible 

01:47:19]- 

Kirill Eremenko: 01:47:19 Yeah, other than the categorical. So- 

Jon Krohn: 01:47:20 Yeah, yeah. 

Kirill Eremenko: 01:47:21 So that was the main thing. That's why it's called 

CatBoost. That's how it works with categorical variables, 

it's the big one. But in addition, one that they threw in 

there is symmetric trees. You can use symmetric trees. 

You can build your own algorithm, brain boosting to 

symmetric trees. They decided to use symmetric trees 

because they're faster. So just imagine a normal tree as 

we discussed, you have a split at the top. Then it goes 

down one way, so you can split at salary at $47,000, for 

example. Then you go left, you split by age at 25 or 45 

years old, whatever it is like the decision tree decide. But 

if you go right from the salary, you'll be splitting by, "Do 

they have a loyalty membership?" And then you go 

further down. So the tree spreads and the branches are 

independent, they do whatever they want kind of thing. 

 01:48:05 That's a traditional tree. With a symmetric tree, every 

time you split, the branches will make further splits on 
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the same variable, on the same condition. So imagine, at 

the top, you have is this person earning less than 

$45,000. Okay. So if it's a yes, then you go left. And the 

next condition you'll find on the left is, for example, "Is 

this person younger than 25 years old?" Well, if you were 

going to go right from the original one about the salary, if 

you're going to go right, well, the split on the right is going 

to be exactly the same. It's going to be, "Is their age less 

than 25?" Now, from the age is less 25, you'll get two 

splits on each side. So you'll have four leaves after that, 

right? And there, the splits, let's say, "Do they have a 

loyalty program, yes or no?" 

 01:49:01 Each one of them will be a yes or no loyalty program. And 

then from there you'll have eight splits, the next time, so 

it'll double again. But let's say you're using a different 

variable now, let's say you have a variable on the, I don't 

know. Let's say, we've done age, salary, the distance to 

your... Or how much time they spend on your online 

store? So now, it's going to be, "Have they spent less than 

15 minutes on the online store in the past month?" Well, 

all eight will have exactly the same condition. So you're 

building the decision tree in a way that every next level 

horizontally across the tree is the same exact condition. 

And why is that good? Well, of course, the tree becomes 

weaker because of that. 

 01:49:51 It's a weaker learner than a traditional decision tree 

because it has less flexibility. But guess what? In 

ensemble methods, we prefer weak learner. So it's 

actually not a bad thing that it becomes weaker. And the 

second thing, which is the main benefit is that it becomes 

much faster during inference. Not during training, you 

still have to build the tree during training, but during 

inference it becomes much faster. And the way to think 

about it is now, let's say, you have four levels. So at the 

beginning you have a question about salary. The second 

question is about age. The third question is about loyalty 
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program. And on the fourth level is about how much time 

they spend less than 15 minutes on your website or not, 

so time on the website. 

 01:50:34 So now, because all of the levels are the same, you can 

take, let's say a new customer comes to your store, you 

can take those exact variables, salary, age, loyalty 

program, "Yes or no?" and time on the website. You put 

them into one vector and so it's a vector where they've got 

their salary, however much they're making. Their age, 

whatever it is. If they're loyalty, yes or no, one or zero. 

And how much time they spend on the website. And now, 

instead of going down through this decision tree and 

every time deciding what yes or no, yes or no, yes or no... 

So like making all these comparisons, you have to make 

one comparison. You take the vector that you've built for 

this customer, and you compare it to the vector of 

conditions. 

 01:51:19 So the vector of conditions will be the salary that you're 

splitting on, let's say $47,000. The age, let's say 25 years 

old. Do they have a loyalty program? There'll be a one for 

a yes and the amount of minutes, let's say 15 minutes. So 

you'll have a vector of conditions. You just have to 

compare the original vector to the vector of conditions, 

and you'll get a vector of ones and zeros. Where did the 

condition, was it correct, was it not correct? Because all 

of the splits on the each level are the same. Whichever 

way you go, there is no difference in the splits. So you 

just need to do this correct... Check once. And is your 

vector for this customer... Then you do the mathematical 

operation less than the vector that you are looking at, the 

vector of conditions and then you'll get a result. It's like 

one, zero, one, zero, for example. And then from there, 

you'll know that the answer for that customer is $76.40. 

 01:52:13 So it speeds up inference, meaning that instead of doing... 

Before with a traditional tree, you will have to do up to X 
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comparisons, where X is the maximum depth of your tree. 

With this one, with CatBoost, with symmetric trees, you 

just have to do one comparison. You just compare one 

vector to another and that's it. And then you get your 

result very quickly. So if you have an application where 

your speed at inference is important, whether it's like 

real-time analytics or I don't know, some gaming 

application, or something that has to happen fast in 

inference, then you might consider using symmetric trees 

or specifically CatBoost. 

Jon Krohn: 01:52:57 Nice. So that was obviously a ton of information. You 

have Kirill really pushed the boat out on providing tons of 

technical content in podcast format. It's been extremely 

well received so far. I thought it was going to be risky 

when you started doing that earlier this year for 

transformer architectures, but people have loved these 

episodes. So thank you for all of that detail. I understand 

that you're going to include a cheat sheet in the show 

notes- 

Kirill Eremenko: 01:53:25 That's right. 

Jon Krohn: 01:53:25 ... for these three main Gradient Boosting approaches. 

XGBoost, LightGBM, and CatBoost. You'll have a cheat 

sheet from your SuperDataScience exclusive course made 

available. 

Kirill Eremenko: 01:53:38 That's right. That's right. It'll be a cheat sheet, a one-

pager that compares all three models side by side. 

XGBoost, LightGBM, CatBoost. It's from one of the 

tutorials. Happy to share it. It'll be in the show notes. Feel 

free to download it and keep it as a memento of this 

episode hanging out on the wall or something like that. 

And it has all the summary of everything that we 

discussed. 

http://www.superdatascience.com/771


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/771   
61 

Jon Krohn: 01:53:56 Nice. So other than superdatascience.com/level2, where 

that's just the integer two at the end as opposed to 

straight characters. Level two, the number two. 

Kirill Eremenko: 01:54:11 Yep. 

Jon Krohn: 01:54:12 Superdatascience.com/level2, other than that, how 

should listeners reach out to you or learn more after this 

episode? 

Kirill Eremenko: 01:54:21 Sure, I'll mention that just now. I just wanted to say with 

this course... So in the course we talk about everything. 

We talked about today in detail, of course, visuals and 

stuff like that. In addition to those three methods, we talk 

a lot about... Of course, you'll learn additional things like 

one-hot encoding, k-fold cross-validation, bias-variance 

tradeoff, hyperparameter optimization techniques like grid 

search, target encoding, AdaBoost. And there's going to 

be lots of practice. Hadelin walks through each one of 

these models, XGBoosts, LightGBM, and CatBoost for 

both regression and classification. For regression, he uses 

an insurance dataset. And you get to see how these 

models perform differently on the same dataset. And for 

classification, he uses a churn dataset for customers, 

whether they will churn or not from a company. And 

again, you'll see how these three models perform 

differently on that dataset. 

 01:55:10 And of course, once you get your membership at 

SuperDataScience, you get access to this course exclusive 

on SuperDataScience to the Large Language Models A-Z 

course, which we released recently. Also, exclusive to 

SupeDataScience, not available anywhere else. Plus, at 

the moment we're doing two live labs per month plus a 

career session. We're gearing up to ramp it up to, my goal 

is four live labs per month starting next few months. And 

basically, that's a live experience where you get a coach, 

an experienced machine learning, AI, visualization 
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practitioner who walks you through creating, solving 

some real-world business challenges. And I think what 

we've heard from our students, it's the main thing that 

helps them get jobs. One of the biggest bonuses that 

helps them get jobs is live trainings like that. 

 01:56:00 So that was a bit of a promotion for SuperDataScience. 

And in order to find me, you can connect on LinkedIn. 

But to be completely open about it, I don't go on social 

media these days often, the best way to connect with me 

would be in SuperDataScience. We have a community, 

people ask questions, chat with each other, and I'm there 

every week, several times per week. And my goal is to be 

able to answer everybody and connect with everybody 

there. 

Jon Krohn: 01:56:29 Nice. Thanks, Kirill. Well, it's great to know that they have 

access to you through the superdatascience.com 

platform. It sounds like a very vibrant place indeed and 

increasingly exclusive content like this Gradient Boosting 

course available just there. Super Kirill, thank you so 

much for joining us yet again for another super technical 

episode. I'm sure the audience loved it, and I wouldn't be 

surprised if you weren't back again doing another one of 

these sometime soon. 

Kirill Eremenko: 01:57:00 Fantastic, Jon. Thanks again for having me. It was a lot 

of fun. 

Jon Krohn: 01:57:09 Another incredibly rich technical episode from Kirill. He 

sure knows how to explain technical content well and 

even have a bit of fun while doing it. In today's episode, 

Kirill fill us in on decision trees, bagging, random forests, 

AdaBoost, and the three leading Gradient Boosting 

algorithms. XGBoost, LightGBM, and CatBoost. As 

always, you can get all the show notes including the 

transcript for this episode, the video recording, any 

materials mentioned on the show, the URLs for Kirill's 
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social media profiles, as well as my own at 

superdatascience.com/771. And if you'd like to meet in 

person as opposed to just through social media, next 

week I will be at the Data Universe conference at the 

massive Javits Center in New York City. That's April 10th 

and 11th next week. I'll be giving a talk on generative AI, 

and we'll also be walking around interviewing attendees 

to capture what you think of this massive conference. 

 01:58:02 All right. Thanks to my colleagues at Nebula for 

supporting me while I create content like this 

SuperDataScience episode for you. And thanks of course 

to Ivana, Mario, Natalie, Serg, Sylvia, Zara, and Kirill on 

the Super Data Science team for producing another 

extremely illuminating episode for us today. For enabling 

that super team to create this free podcast for you, we are 

deeply grateful to our sponsors. You can support this 

show by checking out our sponsors' links, which are in 

the show notes. And if you yourself are interested in 

sponsoring an upcoming episode, you can get the details 

on how by making your way to jonkrohn.com/podcast. 

 01:58:32 Otherwise, please share, review, subscribe, and all that 

good stuff. But most importantly, just keep on tuning in. 

I'm so grateful to have you listening and hope I can 

continue to make episodes you love for years and years to 

come. Until next time. Keep on rocking it out there, and 

I'm looking forward to enjoying another round of the 

Super Data Science Podcast with you very soon. 
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