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Jon Krohn: 00:00:00 This is episode number 813 with Jerry Yurchisin, data 

science strategist at Gurobi. 

 00:00:10 Welcome to the Super Data Science Podcast, the most 

listened to podcast in the data science industry. Each 

week we bring you inspiring people and ideas to help you 

build a successful career in data science. I'm your host, 

Jon Krohn. Thanks for joining me today. And now let's 

make the complex simple. 

 00:00:29 Welcome back to the Super Data Science Podcast. Today 

on the show we've got Jerry Yurchisin, an extraordinarily 

clear communicator of complex topics and a world leading 

expert on real world applications of mathematical 

optimization. Jerry works as a data science strategist at 

Gurobi Optimization, a leading decision intelligence 

company that provides mathematical optimization 

solutions to the likes of Uber, Air France and the National 

Football League, Indeed, a wild 8 out of 10 Fortune 10 

companies use Gurobi. He previously spent eight years as 

a mathematical consultant where he paired mathematical 

optimization with machine learning stats and simulation 

to inform decision making. He was also previously an 

instructor at the University of North Carolina at Chapel 

Hill, where he obtained his Master's in Operations 

Research and Statistics. He holds an additional Master's 

in Applied Math from Ohio University. 

 00:01:33 Today's episode may appeal most to hands-on 

practitioners like data scientists and ML engineers, but it 

does also have tons of content that will be of interest to 

anyone who'd like to leverage data to make better 

commercial decisions or optimize commercial processes. 

In this episode, Jerry details what mathematical 

optimization is, the kinds of real world problems where 

mathematical optimization is a far better approach than a 

machine learning or statistics approach. The history of 

mathematical optimization, including why it wasn't 
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popular until recently, and the cutting edge hardware and 

software innovations in mathematical optimization today. 

All right, you ready for this outstanding episode? Let's go. 

 00:02:15 Jerry, welcome back to the Super Data Science Podcast. 

It's awesome to have you here. You were here not that 

long ago. So, you were in episode number 723, which 

aired in October of 2023. So, less than a year ago. And we 

had to have you back on the show, because that episode 

much more so than almost... It's very hard to do one of 

these things where you're like, "More than any other 

episode." I don't know, there's hundreds of episodes, but 

it's certainly up there in one of the top percentiles of 

episodes that completely blew my mind, because we 

talked for over an hour about mathematical optimization 

and how useful of a tool it is in data science alongside 

approaches like statistics and machine learning. It's this 

completely other tool that you can be leveraging to solve 

specific problems that you're not solving optimally if 

you're trying to use one of those other approaches. So, 

wanted to have you back on and dig in even more detail 

today. Welcome back to the show. Where are you calling 

in from today? 

Jerry Yurchisin: 00:03:26 It's great to be back. I'm calling in from good old Vienna, 

Virginia, which is just outside Washington D.C. 

Jon Krohn: 00:03:32 Yeah, welcome back. Something that we talked about 

during your appearance last time that gave me a really 

crystal clear idea of mathematical optimization was this 

thing called the Burrito Optimization Game. 

Jerry Yurchisin: 00:03:48 Indeed. 

Jon Krohn: 00:03:50 And so, anybody listening right now, they can go to 

burrito.gurobi.com and we'll have a link to that in the 

show notes. And it allows you to play in this fictitious 

world where you're setting up burrito carts around 
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commercial areas, different parts of a town, and you're 

trying to place the burrito trucks in the optimal locations 

to maximize your profit. 

Jerry Yurchisin: 00:04:16 Exactly. 

Jon Krohn: 00:04:18 So, that scenario illustrates for me... If anybody's 

wondering when do I need mathematical optimization, 

you can just head there. It's a free thing you can try out. 

You just create a login and then you can play around with 

it as much as you like. And it provides a really clear sense 

of when mathematical optimization is the ideal technique 

for a data science problem, because there are so many 

constraints in the problem. So, you can have any number 

of trucks, you can place them in lots of different 

locations. 

 00:04:57 There are different weather scenarios. There are these 

external factors. All of these things that can be modeled, 

but are a lot... But, provide a lot of specific constraints 

where you might not want to fit just any number, like you 

would with say a regression model, but where there's 

some range of specific values that are reasonable. 

Because, you can't have negative trucks, you can't have 

more trucks than you have in your inventory to be able to 

send out. So, I don't know if you want to talk about in a 

little bit more detail maybe that... The burrito game, or 

some other kind of example, that recaps for our listeners, 

some of the content that we covered in that preceding 

episode number 723 before we get onto some new 

material. 

Jerry Yurchisin: 00:05:43 So yeah, the Burrito Optimization Game is something 

that we really feel is a great way just to dive in to 

understanding optimization. And two of the things that I 

think really are illustrated there is, one, is this addition of 

constraints to decision making. And that's again, the 

main difference between mathematical optimization and 
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what it does versus much of what machine learning does 

is the predictive nature versus the prescriptive nature. 

Mathematical authorization is prescriptive. It falls in this 

decision intelligence umbrella. At least that's where we 

feel it fits. So, it's more about decision making as opposed 

to understanding the future. So, when you have these 

business role constraints things, those are things that 

restrict your decisions more or less than anything else. 

And in addition to that, the combinatorial complexity of 

the decisions, and that's something that is really 

highlighted in the Burrito Optimization Game where you 

have a fixed number of places where you can place a 

burrito truck to feed people lunch and your decision as a 

decision maker is like a, "Yes, No, do I place a truck 

here?" 

 00:07:03 So, that's what we call a binary decision variable. I can 

talk a little bit more about why those are super useful a 

little bit later. But, one thing that I like to think about is 

let's take a decision space like that. That's what we call 

the possibilities of what you can decide is a decision 

space or a feasible region. Those are some of the 

terminology that we use. If you have 40, "Yes, No" 

decisions, that turns out to be... I had the number in 

front of me, it turns out to be something like the number 

of possibilities is I think 1.1 times 10 to the 11th, just 40 

"Yes, No" decisions. "Do I have all of them 'Yes?'" All of 

them, 'No?'" What all the possibilities in between, 10 to 

the 11th... Or sorry, maybe it's 10 to the 12th. And if you 

take- 

Jon Krohn: 00:08:03 It's a huge number - 

Jerry Yurchisin: 00:08:04 Yeah. 

Jon Krohn: 00:08:05 ... comprehensively large number either way. 
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Jerry Yurchisin: 00:08:06 Exactly. And to bring that number into perspective a little 

bit, if you were to take the distance from earth to the sun 

in feet, that's still less, about half. It's about half. So, 

that's the 10 to the 11th. And 10 to the 12th is the 

number of possibilities for 40 "Yes, No" decisions. So, just 

that little 40 "Yes, Nos." So, if you have 40 spots on that 

burrito map, and your question is, "Do I want to place a 

truck there? Yes or no?" That's already more complex 

than the... The number of possibilities is greater than the 

distance from earth to sun in feet. So, that's pretty crazy. 

So, understanding that complexity, that just vastness of 

decisions, because if you're like, "Oh, I'll just enumerate 

through all of these, just plow right through it and figure 

out which one of these is the best," then good luck. 

 00:09:06 The earth will probably be long and exploded or 

something by the time your laptop is done running that. 

So, that's something that the optimization game Burrito 

Optimization Game really brings home is. "Holy crap, 

there's a lot of options here." And it's just for a very, very 

simple game of dragging trucks. And it's fun, it's 

interactive and everything like that. And then you get 

more complex with different scenarios where it's... 

Because, people walk to your truck and you see them 

filing out of little buildings to your trucks and everything 

like that. And, "Okay, what if I slightly move a truck over 

here?" And you see the nuance of decision-making and 

everything. And yeah, it just really drives home the 

complexity of what types of problems people try and solve. 

And again, I was talking about 40 binary variables, 40 

"Yes, No" decisions. In practice when you go to... And 

what people are using out there in the world of business 

decision making and mathematical optimization, what 

people really use this for is the number of decision 

variables is thousands, tens of thousands, hundreds of 

thousands, millions, even tens of millions for some. 
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 00:10:25 So, you're having all of that just massive, massive 

decision making capability very distinctly modeled, and 

just be able to click, "Go," more or less and use a tool like 

Gurobi to help plow through those decisions instead of 

enumerating them and saying, "Which one's the best?" 

Our special sauce solver that plows through those options 

in a super smart way, and says, " This is the decision that 

will give you the most profit for this problem, or the least 

cost, or doing things in the most fair way." 

 00:11:13 A bunch of different types of objectives that you can try 

and model here. And the Burrito Optimization Game just 

really talks about maximizing profit. But, there's a lot of 

utility that it can be maximized, or a lot of fairness, and 

things of that nature as well. So yeah, it's just a great 

tool. I'm super pumped that we're able to get this going 

last year. And we use it for a lot of events and it's just a 

great way to understand optimization. 

 00:11:45 The one thing that I do want to be... It's mathematical 

optimization, while it's great for that problem, it's great 

for so many other problems too. So, I don't want anyone 

to do optimization or play this game and think, "I'm not 

putting burrito trucks on streets, so I'm going to do 

something else." No, no, no. You can use it for a whole... I 

think last time I talked about all the different industries, 

different use cases, scheduling and supply chain stuff are 

like our bread and butter, the logistics. And there's a lot 

of chemical mixing like gas and oil companies use 

optimization a lot for that type of stuff. But, we're into 

financial tools, finance and healthcare stuff. We're all over 

the place. So, if you're thinking, "I'm in this industry, I 

want to know if optimization could be good for me," go 

onto our website, look at the use cases, ask ChatGPT, 

"Hey, is this a good thing for optimization?" And it will 

probably be like, "Yeah," because it is useful for a lot of 

decision making problems. 
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Jon Krohn: 00:12:59 Ready to take your knowledge in machine learning and AI 

to the next level? Join SuperDataScience and access an 

ever-growing library of over 40 courses and 200 hours of 

content. From beginners to advanced professionals, 

SuperDataScience has tailored programs just for you, 

including content on large language models, gradient 

boosting and AI. With 17 unique career paths to help you 

navigate the courses, you will stay focused on your goal. 

Whether you aim to become a machine learning engineer, 

a generative AI expert, or simply add data skills to your 

career, SuperDataScience has you covered. Start your 14-

day free trial today at superdatascience.com. 

 00:13:38 Yeah, real world practical decision-making problems 

across, as you mentioned there, things like scheduling, 

supply chain, logistics, finance, healthcare, chemical 

mixing, those are kinds of common use cases, but it 

could be any industry. The key thing I think for situations 

where you want to be using mathematical optimization is 

that there's some outcome that you're trying to maximize 

or minimize. And, I guess, that is also something that's 

different about when you think about, you made the 

distinction at the outset between making predictions like 

predicting the future versus being prescriptive. And with 

something that's prescriptive like this, you are not taking 

necessarily a bunch of historical data and just trying to 

say, "Oh, if my inputs happen to be these inputs, what 

am I going to get?" What you're doing with this kind of 

prescriptive approach with this mathematical 

optimization that Gurobi offers is that you are saying, 

"How can I maximize given these constraints? How can I 

maximize some outcome or minimize some outcome?" 

 00:14:43 So, how can I maximize profits or how can I minimize 

delivery time? And then as you mentioned there, what 

you call the secret sauce, the key thing that Gurobi is 

offering is that, I guess, figuring out what your full 

optimization space is. That can be hard, but it's not the 
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hardest thing. The hardest thing is then being able to 

explore over that space. Which as you mentioned in the 

real world, there could be millions of possible decision 

points that could be binary or continuous. And so, the 

key, the secret sauce, is this Gurobi solver that can then, 

in a lot of situations, work extremely rapidly at optimally 

solving... Approvably optimally, if I- 

Jerry Yurchisin: 00:15:30 Exactly. 

Jon Krohn: 00:15:31 ... remember correctly. This isn't an approximation of 

what the maximum profit would be or the minimum 

delivery time. It's mathematically proven to be the 

maximum or the minimum, whatever you're looking for. 

And it typically happens rapidly, at least in my hands-on 

experiences with it. And critically it's easy to access 

through, say, Python. So, you've provided lots of, and will 

provide links in the show notes, to lots of Jupyter 

notebooks and tutorials that you've created to allow 

people to be accessing the Gurobi Optimizer through 

Python code. 

Jerry Yurchisin: 00:16:10 Exactly. Yeah. And what you're saying about how the 

constraint part of it is a huge thing and makes things 

very, very difficult. And again, this requirement for binary 

decision variables for integer decision variables. If you're 

building cars, you can't build half of a car, so it may be 

very, very important that you're deciding things in integer 

quantities. So yeah, those are a couple of the key things 

that differentiate mathematical optimization from 

something that you would do purely calculus based. And 

you have like, "Oh, I have some curve and I want to find 

the maximum minimum of it, so why don't I just take a 

couple of derivatives and bada bing bada boom I'm done." 

Stuff like that, while those methods are incorporated in 

some things, but it differentiates from that because of all 

of those restrictions, and the constraints, and the ideas 
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that we... If I am a binary decision variable, something 

like, "Yes, No," do I want to open a warehouse in this city? 

 00:17:19 You can then have "If-thens," like, "If I open a warehouse 

in this city, then I shouldn't open another warehouse 

within 200 miles," because why would I do that? So, then 

you can build that logic into the model and then say, 

"Okay, any location I build a warehouse or any location 

that I put a burrito truck, I do not want to put another 

warehouse or whatever truck within a certain distance 

because it just doesn't make sense," or because of any 

other business reasons that you may know of yourself or 

people may be telling you, "This is the way we need to do 

things." Mathematical optimization is really just about 

modeling logic via algebra, and that's where the art of it 

more or less rests is being able to take those business 

problems that people are just verbally telling you and 

then you say, "Okay, I understand what you're saying." 

And then you translate it into some algebra and then you 

translate that algebra into code. 

 00:18:25 And Python is our, by and large, our most popular API, 

and it's really, really good. Not just saying that as an 

employee, but as someone who used it before joining and 

everything that it is great. And just make that whole 

process pretty seamless. And that's why mathematical 

optimization as a whole, I think, it's different from 

machine learning because of that. Modeling business 

logic is not something that machine learning does. If your 

data does not contain these cases that have happened, 

then you're blind first off. And even if it does, what the 

outcomes were, what the decisions were, all the other 

things that can influence such a regression, let's say. 

How do you know that things were being... It's just relying 

purely on past data is not the approach. Because what if 

the past was... Things have changed. There's just so 

many underlying things that have changed, particularly if 

you think of pre COVID, during COVID, post COVID type 

http://www.superdatascience.com/813


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/813   
11 

of things. Events like that just destroy predictive models, 

because how can you predict what's going to happen 

during a once in a generation outbreak, when it's once in 

a generation? How much data do you have on that? 

 00:19:58 But, something like mathematical optimization, when 

you're describing the logic of a system, like a supply chain 

network, or a schedule, or how I want to invest in a 

portfolio of stocks or something like that, that logic stays 

the same independent among... You may want to say, 

"Okay, we're in a pandemic now, I want to be more 

conservative." You can then... "I want to be more 

conservative with how I invest," or something like that. 

Then you can really model that with logic and you can as 

opposed to relying on underlying data to make some 

decisions about that. And it's also not to say that these 

two things shouldn't work together. They definitely do. 

And that's my main message as [inaudible 00:20:47] 

Gurobi- 

Jon Krohn: 00:20:46 You mean the two things being machine learning and 

mathematical optimization? 

Jerry Yurchisin: 00:20:50 Precisely. Yeah. You should not be... I feel it should be 

very, very rare case in which you build an optimization 

model in which the numbers that you use there, that go 

into it, are not provided by some sort of machine learning 

process or some sort of intense, rigorous data analytics 

process. Be it machine learning, be it statistics, be it just 

really crunching some numbers and coming up with a 

mean of some sort. An average. That could be fine. But, 

there should be a lot of information that goes into that, 

but it's just... But, mathematical optimization itself does 

not rely on vast amount of underlying data. 

Jon Krohn: 00:21:32 Very cool. Other than Python, what are other APIs? You 

mentioned Python is the most popular API, but what 

other options are there out there? 
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Jerry Yurchisin: 00:21:40 If you're into C, we have that. Java, .NET. I'm an avid R 

user. I love R. So, you can use that as well. Pretty much 

any way that you do your work, it'll be there as well. So, 

we definitely make sure that we are very accessible to 

anyone. 

Jon Krohn: 00:22:04 Nice. We don't do as many R episodes probably as we 

should, because whenever we do, they're very popular. I 

don't know if you heard in episode number 779 back in 

April, we had Hadley Wickham on the show. 

Jerry Yurchisin: 00:22:16 I did not see that one. 

Jon Krohn: 00:22:18 It's one worth checking out for all you R lovers out there. 

It's all about R, because it's Hadley Wickham. It's pretty 

funny, in the episode, I have my own biases. I became a 

"Data scientist," before that was a term, using R, and 

have since made the migration to Python and mostly 

ended up using Python. And so, even in this Hadley 

Wickham interview, talking to a guy who has developed 

many of the most widely used libraries, even to him, I'm 

like, "So, how often do you use Python," and that kind of 

stuff. And he's like, "Never." That's his whole shtick, is 

taking functionality or capabilities that are in Python and 

bring them over to R, making sure that it is as performant 

on anything as Python. And also, so coming up in a 

couple of weeks, I'm anticipating episode number 817 will 

be with Julia Silge, who is an iconic R author, specifically 

on natural language processing with R. 

Jerry Yurchisin: 00:23:25 Oh, awesome. 

Jon Krohn: 00:23:25 So, that'll be a cool one for people to check out. Anyway, I 

digress. Yeah, so Python is the most popular API, but you 

mentioned also there C, Java, .NET, R. And a critical 

thing to mention here is that despite... Prior to our 

episode last year, Jerry, I hadn't really heard of Gurobi. It 

wasn't something that was in my consciousness. But, 
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since then I see Gurobi all over the place, and I hear 

people talking about Gurobi all over the place. And that is 

because people who work, particularly in a corporate 

setting, like at a Fortune 500 company, if I remember 

correctly, it was something like 80% of Fortune 500 

companies use a Gurobi Optimizer. And so, while it isn't 

something that unlike R, or MATLAB, or Python, which 

are these programming languages or toolkits that you 

tend to learn about in university, as far as I'm aware 

Gurobi... You don't have that many data scientists 

coming up with Gurobi as part of their education. But, if 

they're working at a big corporate that needs to be solving 

these big complex problems, there's a really good chance 

you are using Gurobi at one of those companies. 

Jerry Yurchisin: 00:24:43 Yeah. It is one of those secret things. And actually we 

just... Every so often we dive into the Fortune lists and 

compare our customers to that. So, we actually just have 

recent update stats and I will rattle them off here. So, of 

the top Fortune 500, 35% once you get up to 250, and 

notice the trend here. When you get up to 250, 43%, top 

100 is 51%, top 10 is 80%. 

Jon Krohn: 00:25:21 Right. 

Jerry Yurchisin: 00:25:22 so- 

Jon Krohn: 00:25:22 Right. That's where I got my 80% from. 80% of the 

Fortune 10. 

Jerry Yurchisin: 00:25:26 So yeah, mathematical optimization and particularly 

Gurobi where we are everywhere in a sense, but it's just 

typically hidden in some application that you may use, 

and you just never know that you're using Gurobi, 

because we are the engine to the car, more or less. If your 

decision problem's the car, then we are the engine that 

makes it go. But, you don't really care about the engine. 

You hop in, you turn the key, and you go. And you go 
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from point A to point B, so you don't really worry about it. 

If you think about something like Google Maps, and it 

gives you, "Okay, to get from point A to point B here, you 

should take this road, and it's going to be, this is the 

quickest time or the shortest distance, or the most fuel 

efficient." There's optimization there, and you just don't 

even know that you're using it. And that's another 

example of different types of objectives that you can have 

in mathematical optimization. 

 00:26:31 Do I want a minimum carbon footprint? Do I want carbon 

put out there, or do I want minimum distance, minimum 

toll costs? All these sort of things. Anyways, but yeah, 

there's so many ways in which mathematical optimization 

is there. If you schedule a delivery from any sort of 

massive, one of the larger carriers, or anything like that, 

and they say, "Okay, well, your package is going to arrive 

at this time," there's a pretty good chance that some 

optimization went into that to help them figure out what's 

the way that they can get you your, whatever you just 

purchased, get it to you as quickly as possible, but also in 

a cost-efficient way for them. 

 00:27:12 So those are the types of things in which optimization is 

there, and it's there everywhere. And that's what part of 

our Gurobi's message for the upcoming... I guess our, we 

call it Gurobi 2.0 internally and kind of externally I guess, 

but just that optimization is everywhere, and we're just 

trying to highlight where it is and how you can use it and 

how you can use it... And again, we believe our solver's 

the best out there and thinking that if you do have such 

problems, then Gurobi might be the way to go. But 

overall, I think if people come away here thinking that 

mathematical optimization and not... Remove the Gurobi 

thing from it, just if that mathematical optimization is 

something that I should learn, then I feel it's a success 

today. 
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Jon Krohn: 00:28:06 Eager to learn about large language models and 

generative AI but don't know where to start. Check out 

my comprehensive two-hour training, which is available 

in its entirety on YouTube. Yep. That means not only is it 

totally free, but it's ad-free as well. It's a pure educational 

resource. In the training, we introduced deep learning 

transformer architectures and how these enable the 

extraordinary capabilities of state-of-the-art LLMs. And it 

isn't just theory; my hands-on code demos, which feature 

the hugging face and PyTorch Lightning Python libraries, 

guide you through the entire life cycle of LLM 

development, from training to real-world deployment. 

Check out my generative AI with large language models, 

hands-on training today on YouTube. We've got a link for 

you in the show notes. 

 00:28:48 Nice, and so if we have listeners out there who write 

Python code or write R code and they want to be getting 

started on using Gurobi or mathematical optimization on 

some real-world business problem that they have today, 

how hard is it for them to set up the problem? So we 

talked about how the hardest part of this is having the 

optimizer work efficiently. Gurobi handles that for us 

automatically under the covers. But the thing that is 

bespoke and different for every circumstance, for every 

business problem is figuring out how to set that up in our 

code. And so, how tricky is that? How often can somebody 

do that on their own versus needing to say, engage with a 

consultant that is expert at this kind of stuff? 

Jerry Yurchisin: 00:29:35 To model the hardest of hard problems out there? It does 

take some experience with anything. It takes some 

understanding of how these particular sets of constraints 

work, and again, taking the logic that someone says or 

writes down and translating that into the algebraic logic 

and then that into code can be tricky. But there are some 

things that, specifically Gurobi and other solvers and 

other platforms, and things that do, be they're 
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competitors or something, there is sort of shortcuts out 

there where you don't have to know all of this stuff, and 

you don't have to understand all of it down to its most 

minute detail. So it is very easy to get started, and it is 

easy to, because our simple problems are extremely 

simple. But then, building on top of that, yeah, it's going 

to take some understanding, it's going to take a little bit 

of work, going to take some research and a lot of stack 

overflow, and things like that to really get to a production-

level type of model, I'd say, at a large scale. 

 00:30:56 But the journey there is, and this is sort of one of the 

hang-ups of mathematical optimization in the past, is 

that you needed to have a PhD in order to make this 

journey from basic problem to actually doing something 

at scale for a business and making an impact. Now, that's 

not the case. You can just be really good at coding and 

understanding logic, and you can have an impact, and 

can solve problems, and you can provide solutions that 

are really doing something. And that's part of why I joined 

Gurobi to help get those resources out there. So I'm just 

going to talk about what we put out there a little bit, but 

there's a ton. I think at the end of the last episode I 

referenced an optimization book that would be really, 

really good again to dive into. But from our perspective, 

from things we released, I did two online training sessions 

that we call Optimization for Data Scientists, Opti101, 

Opti201. 

 00:32:07 So it was the bare basics of optimization. And then some 

more intermediate level, the Opti101 series, you can find 

on our YouTube page. And the Opti201 is going to be on 

our YouTube page, probably in the next month or so. And 

there's going to be an Opti. I think 202 is kind of how 

we're phrasing it or thinking about it internally, which is 

sort of more intermediate-level stuff. All of it has hands-

on exercises, hands-on notebooks, me looking at a 
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camera just like this and talking to people for hours and 

hours, making mistakes like everyone does. 

 00:32:47 And it's just a lot of fun. It's a great way to just take a day 

or so to really improve some skills. And then we also have 

recently launched, I think in April, something that's a lot 

more massive. So, on Udemy, we have Optimization 

Through the Lens of Data Science. It's a four-part course. 

We teamed up with one of the best optimization minds 

out there, Dr. Joel Sokol from Georgia Tech, and he walks 

you through everything that you need to know about 

mathematical optimization, from the absolute bare 

beginnings to creating real models that, again, will have a 

real impact. And just makes that journey step-by-step-by-

step, very incremental, nothing too crazy, all in Python, 

and then weaves in his experiences and everything with 

his consultancy stuff that he's worked on the side and 

stuff that he's done. And it is a wonderful way to set 

yourself on the journey. And again, it's Through the Lens 

of Data Science. So it's again saying how these two things 

really, really work well together, how they are super 

complimentary. And between those two things, I think 

you're set. But again, you can... 

Jon Krohn: 00:34:22 Between the Opti101 course that's available on YouTube 

now as well as the Udemy course. That's Through The 

Data Science Lens, we'll be sure to include links to both 

of those. 

Jerry Yurchisin: 00:34:31 Awesome. And I think we were saying, How can one 

person make this journey? Again, I was talking about 

incremental sort of building upon, "Okay, I know this; 

now I know a little bit more and a little bit more and a 

little bit more. Now I can actually get to something that 

makes a lot of sense." So that type of progress isn't just 

for learning optimization as a whole, but it's how you 

build a model. You start with a very basic premise, a very 

basic problem that someone talks to you about, and then 
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you build a model, and then you'll get a solution that 

makes no sense when you talk about it. 

 00:35:11 And that's 100% expected and fine. It'll say, "Oh, put one 

burrito truck here, and it'll serve everybody, and you'll 

make infinite profit," and you'll be like, "Whoa, whoa, 

whoa. That makes no sense. Oh, I forgot this type of 

constraint, or I modeled something slightly wrong," or 

something like that. Just building a model within itself is 

iterative, not just learning how to do optimization is 

iterative, so you're going to make mistakes, you're going 

to get weird answers. Like mathematical optimization, I 

call it, it's like the best cheater of all time. If you give it 

the smallest little opening to have infinite profit, it will 

find it. 

Jon Krohn: 00:35:55 Right. Reward hacking to take the reinforcement learning 

terminology. 

Jerry Yurchisin: 00:35:59 Yeah, precisely. Yeah. It will do that each and every time 

if it's possible. So yeah, if you find yourself stumbling a 

little bit, like, "This doesn't make sense or this doesn't 

make sense; why am I getting weird solutions or no 

solutions?" then that's perfectly normal. The best of the 

best of us still do that, and it is just part of the learning 

process. 

Jon Krohn: 00:36:25 So, how do you know? You talked about that iterative 

process, you can get some answers that make no sense. 

Like you gave the example there, where you set up 

something like the burrito game, and it tells you, you can 

make an infinite amount of money by having one burrito 

truck that's serving everyone. And logically, you can look 

at that and say, "That doesn't make any sense." And so, 

when you've built a really poor model or there's some big 

hole that the optimizer can exploit, that kind of sounds 

like, "Okay, you can visually tell; you can logically tell this 

is a problem." How do you know that you've gotten to a 
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place with the way you've designed your model that this 

really is something that will work well in the real world? 

Because you can imagine, maybe there's some 

intermediate models on the way there, where to your eye, 

nothing seems awry. 

Jerry Yurchisin: 00:37:17 Yeah, and that's where the process that I'm talking about, 

from written word or verbal to algebra to code. But that 

first part is really, really important, because when you 

say you have a constraint on budget or something like 

that, that is very succinctly and very much declared in 

the model. So it is there, and once it's in that model, then 

it's guaranteed to be respected. So if there is nothing that 

you can find in that translation, then you can feel very, 

very confident that what you're doing is representing your 

problem. So, and that is, I'm making it sound like it is 

kind of easy. It can be very, very difficult to make sure 

that that happens because some of that logic that I'm 

talking about is very complex, and it takes some 

experience, some understanding to really make sure that 

that happens. And there can be ways in which you think 

it's working and it doesn't, and you find out well after the 

fact that there is something that is kind of going awry, 

and there is no sort of silver bullet for that. 

 00:38:33 I think it is experience; it is really understanding the 

system that you're modeling and what makes sense. So 

the burrito game, making infinite profit, obviously that's a 

clear indication, but maybe if you are someone who is in 

that business and really understands food service and 

putting out food trucks and fleet management or 

something like that from that perspective, they may 

understand something that you didn't and then therefore 

saying, "Oh, this kind of doesn't make sense; you should 

really add a constraint to make this happen," or 

something along those lines. So I would say that SME 

expertise, Subject Matter Expertise on the actual problem 

that you're solving, is probably the best thing to really 
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make sure you understand that the solutions that you're 

getting are in line with what you would expect. 

Jon Krohn: 00:39:39 You mentioned earlier on about how when you're setting 

these things up, in addition to the kinds of tutorials you 

provided, the Jupyter Notebooks there, people might want 

to consult things like Stack Overflow. Now that 

immediately in my mind jumped to today how I am much 

less frequently using Stack Overflow, and for me, I'm 

usually using Claude by Anthropic, but there's also GPT-

4o from OpenAI or Gemini from Google, these state-of-

the-art LLMs. Have you kind of pair programmed with one 

of these LLMs on an optimization problem? 

Jerry Yurchisin: 00:40:17 Yes, and I do it a lot to see how well it works. And 

actually, that is something that I'm exploring with people 

internally. We are putting together a custom GPT that will 

help with some of this, and we're coming at it from an 

educational perspective of this is going to help you 

understand optimization modeling. I would not feel 

comfortable putting anything, copy pasting code, and 

putting it into production right now for anything, really. I 

mean, not just optimization, but anything, literally 

anything, any code generation that pops out for anything, 

you got to do some checking on that. Same thing for 

mathematical optimization, but it does a surprisingly 

good job of making that logical connection from... There is 

this incredible parallel between how I was talking about 

someone states a decision problem, and you need to 

translate it. That's exactly what you can do with all the 

tools that you were just talking about. 

 00:41:36 And so you just give it a prompt, and yeah, it'll do a really 

good job. There are things that it makes mistakes on. And 

we are trying to understand those, and I think it could be 

later this year. We do plan on sort of doing a webinar on 

that. It'll be something that'll be really cool. Again, I'm 

experimenting a lot with some problems, and we also 
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have a couple other people who are doing that. And part 

of Gurobi's innovation is, we had an internal innovation 

competition, so everyone submitted ideas and things, and 

one of my colleagues was like, "Hey, we should do 

modeling with GPT." Everyone's like, "Yep, 100%." No 

other innovation project really came close. That was the 

clear winner. But yeah, it's something that I 100% think 

is a great idea. You just need to take it with the proper 

grain of salt that you do with everything. 

Jon Krohn: 00:42:43 So for getting started, for educating yourself on how 

optimization problems work and how you can be 

integrating Gurobi through the Python API or the R API 

into your code, having suggestions from these top-of-the 

line cutting-edge LLMs, like I already mentioned, Claude 

3.5, GPT-4o, and Gemini from Google, I suspect it is 

similar to my experience with any of the coding that I do, 

where, yeah, like you said, most of the time it doesn't 

make mistakes, but because it does sometimes make 

mistakes, you need to be sure that you understand 

what's going on in that code. You can't just copy paste 

and put it into production like you said. 

Jerry Yurchisin: 00:43:27 And from our experience, the simple models, we actually 

started benchmarking these too, our simple models from 

our Jupyter Notebook library, and it does super simple 

models extremely well. You can set it and forget it for 

that. And then once you get to intermediate, there's like a 

coin flip, whether or not there will be an error. And then 

complex models, right now, we've seen some 

improvement, but there's just some things that it just... 

Particularly once you start talking about abstract ideas, 

one that we had a little bit of a problem with but actually 

recently saw some improvement is a 3D Tic-Tac-Toe type 

of game. Okay, can you do this? Filling in minimal 

number of lines in order to do something. I think it's 

filling in the 3D board with minimal number of 

connecting three Xs in a row or three Os in a row, doing 
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that. And we had some problems with just the abstract 

nature of that problem. It just didn't really translate well. 

So I mean, yeah, there are some things, there are some 

problems, but yeah, always verify. 

Jon Krohn: 00:44:47 Nice. All right, so on the topic of LLMs, companies like 

NVIDIA have had explosions in their share price because 

GPUs are critical to efficiently training any kind of deep 

learning model. And the larger they get, so huge LLMs 

like the ones I just mentioned, GPT-4 kind of class 

models, Claude-3 class models, Google Gemini, these are 

gigantic; you're going to need many GPUs to train over. 

And so, the most cutting-edge, like H100 NVIDIA GPUs, 

are in really high demand, because if you want to be 

training the next generation of LLM from scratch, you're 

going to need the absolutely most cutting-edge hardware. 

 00:45:36 And so these kinds of processors, GPUs, they build on the 

same kind of, they're called graphics processing units 

because they originally were for rendering 3D graphics 

and things like video games or when you're doing video 

editing on your computer and the same kind of simple 

matrix multiplication that is critical to doing that kind of 

graphics rendering also turns out to be the kind of highly 

parallelizable simple computation that we need for 

training or even at inference time with deep learning 

models. And as I already said, as they get really big LLMs, 

the more and more critical having GPUs becomes. If you 

tried to train an LLM on CPUs from scratch, it would... 

Like, you gave the example of the earth exploding or 

maybe our sun going nova before you would have your 

model trained. So a question that I have for you is: how 

does mathematical optimization relate to the kind of 

device that we're training on, like a CPU or GPU? 

Jerry Yurchisin: 00:46:47 So, for the question of GPUs, hey, GPUs are the cutting 

edge for everything. Is that the same thing for 

mathematical optimization? The answer to that is no; it's 
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not the right tool for the right job, which was something 

that I harped on, I think last episode. Choosing the right 

tool for the right job for decision problems. Well, for this, 

it's like GPUs, again, Jon, as you were saying: massive 

parallelization, simple operations. That's just not what 

the algorithms that we have for mathematical 

optimization, those are not like that. They're not hyper-

parallelizable, they're not providing simple computations 

by and large. So if you do try, and right now if you try and 

run typical mathematical optimization algorithms, which I 

can talk a little bit more about those in a little bit, sort of 

high level on what goes on there. If you try and do that, 

then it's just not the right fit, and you'll suffer some 

performance issues there. There is one little exception in 

matrix factorization, is a very important part of one of the 

types of algorithms that's used, and that's something that 

can be done pretty well on GPUs. 

 00:48:14 So there is some hope, and it is something that the team 

Gurobi, and other folks are trying to look into. We're 

always looking for the best way out there to run what we 

want to run, to solve the problems that we like to solve. 

So, if, at one point, GPUs are the way to go, then that's 

the way that we're going to go. So it's that being said, 

yeah, CPU is the way to go. But one interesting thing that 

I do want to mention about, particularly with NVIDIA, is 

they actually, through a customer, through something, 

through the fates that be, came and sort of knocked on 

our door and were like, "We heard you have really hard 

computational problems for CPUs." And we're like, "Yes, 

we do." So they wanted us to test out their Grace CPU on 

the problems that mathematical optimization solves and 

use Gurobi. So one of my close colleagues, we call him 

the mad scientist, Greg Glockner, who's a VP technical 

fellow at Gurobi, has been working at Gurobi for, I think, 

he was employee three or four or something like that. 
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 00:49:43 He's number one in my book. But he did a lot of testing 

with other folks on our side and using their CPU 

compared to sort of the established AMD processors that 

we typically use for benchmarking. We found a 23% 

improvement on hard problems while using 46% less 

energy. So that type of improvement, like, "Hey, that's a 

pretty impressive improvement from a speed perspective, 

but from an energy consumption perspective," it was 

something that was really interesting to see. So the CPU 

environment for us, we're still improving; there's still cool 

things happening out there. And from, I guess, a 

computational perspective of, "All right, how much faster 

is this stuff getting over time? Are you guys reaching a 

plateau? Is the hardware reaching a plateau? Are the 

algorithms sort of slowing down?" The answer to both of 

those is not really, and as I was just talking about, there 

is still room for CPU performance improvements there. 

 00:51:09 There's room for energy improvements, energy 

consumption improvements, and what we work on is the 

algorithmic improvements as well. And I actually just ran 

across this slide that we have for presentations, just 

earlier today, from version 11, which was released last 

November. To comparing that to our earliest versions, 

where the Gurobi solver, independent of hardware, is 80 

times faster. So if you think about that, 80 times faster 

than we were 10 years ago, plus all of the crazy hardware 

improvements, processing improvements on top of that, I 

mean, you're solving problems like thousands times faster 

than you used to be. So stuff that would take, "Oh, this 

would take a day to solve or to take a week," is solving in 

minutes and seconds now. 

 00:52:06 So that's part of what we want to get out there into the 

world as part of our message is, "Hey, CPUs, processors 

are awesome and they're getting better." We got really 

smart people and we bring more on. Year after year, we're 

expanding our teams and bringing in the best of the best. 
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Our algorithms are getting better. Because of that, 

problems that you would just not even think about 

solving five years ago are solvable in minutes now. And 

that is a key thing that was a common misconception of 

mathematical optimization, is, well, it's too complex of a 

problem to solve. The computational stuff, don't even 

worry about it. And we're like, "Hey, at some point, yes, 

you can make problems infinitely large, and yeah, it's not 

going to solve, but you can still get real business results, 

solve real problems at the scale that you want and it's 

doable." So that's part of my spiel, part of my getting on 

my soapbox, is that. 

Jon Krohn: 00:53:13 Well, what's really interesting about this whole 

conversation that you just had is that I was only vaguely 

aware that NVIDIA was working on CPUs at all. Now that 

you say that, it's something that there's some cobwebby 

memories out there, but this is the first time. So the blog 

post that you provided authored by Greg Glockner, whom 

you mentioned earlier from Gurobi, that VP and Technical 

fellow at Gurobi, I will be including in the show notes a 

link to this blog post, which is super interesting because 

it's going into so much detail on NVIDIA's CPU's. And it's 

got it right in here, as you mentioned, compared to the 

AMD chip that I guess you would typically be using, it's 

23% faster and uses 46% less energy. So effectively half 

the amount of energy, which when you think about the 

scale that these things can be implemented on, even just 

work that Gurobi is doing where it's greater than 1,000 

clients, something like 1,200 clients that you guys have 

around the world. And so that cost savings is gigantic, 

and energy savings is gigantic. 

Jerry Yurchisin: 00:54:22 Yeah, exactly. And as a company who preaches like, "Hey, 

you want to reduce costs, use the mathematical 

optimization." If you want to reduce costs, then there are 

things out there that can help run our product and other 

similar things faster and more efficiently. 
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Jon Krohn: 00:54:43 And just reading some more details about this Grace CPU 

from NVIDIA, it has 72 cores and 480 gigs of high 

performance low power memory. So that's wild. I mean, 

it's taking the same philosophy I suppose that NVIDIA 

has had historically with parallelization, lots of memory, 

high speed memory transfer. So that expertise that they 

have around developing the world's by far most popular 

GPU's, AI inference accelerators, taking that same 

expertise and now applying it to CPUs, making chips that 

have tons of cores and tons of memory. Cool. Great story 

there. In addition to new hardware options, like being 

able to use those kinds of CPUs, you mentioned things 

like an ADX speed up for the Gurobi software. Just the 

way that the Gurobi optimizer is implemented, you get 

ADX speed up hardware. Hadn't changed over the last 10 

years, you'd still enjoy that ADX speed up because of 

more clever work on the software side of the optimizer. So 

can you tell us more about new optimizer versions that 

you have and maybe go into more detail on how the main 

algorithms work? 

Jerry Yurchisin: 00:56:02 Yeah. So what we've at Gurobi have been diving into a lot 

over the last couple years is if you look at what MIP 

stands for at MIP, that's Mixed Integer Programming, but 

there's an implicit L there, and the L is for Linear, Mixed 

Integer Linear Programming. So everything needs to be 

linear or it should be linear. It's very helpful if it's linear. 

So your constraints need to be linear functions. Your 

objective needs to be a linear function for that. 

Jon Krohn: 00:56:34 This reminds me, I think a year ago in that episode, in 

episode number 723 that you were on, this reminds me of 

MILP, Models I'd Like to Program. 

Jerry Yurchisin: 00:56:45 Yeah. I remember saying I need to use that and I think I 

used it for a little bit and then I forget, but I'll bring it 

back for sure. So a lot of this stuff is really helpful to be 

everything linear fashion, and the complexity would be in 
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the integer variables, the binary, stuff like that. That's 

where things got complex and things. Now we're diving 

into quadratic things. So your objective is a quadratic 

function, your constraints are quadratic. And that was 

the big thing from I think a couple versions ago for us, 

was it was really doing well in that. And those types of 

applications are very important in chemical engineering 

and things like that. 

Jon Krohn: 00:57:38 And so in case people aren't aware off the bat, if you can't 

quickly visualize what that means, quadratic, it means 

that as opposed to a linear relationship, so with a linear 

relationship as X goes up, Y say always goes up, or as X 

goes up, Y always goes down. So you have that linear 

relationship between X and Y. With a quadratic 

relationship as X goes up, there might be a period of time 

where Y goes up and then it starts to go down or the 

other way around, it begins by going down and then 

starts to go up. So you have a curve that can be modeled 

quadratically with a squared variable. So obviously 

there's lots of real world scenarios where you need to be 

able to model that in order to build a high quality model 

of some real world process. So I think you were just 

starting to mention that. Was it with chemical 

applications? 

Jerry Yurchisin: 00:58:31 Yeah, chemical engineering is one in which that's a go-to 

way. And prior to that you would do a lot of what we call 

linearization of things where you would estimate those 

non-linear functions with piecewise linear approximation. 

So instead of your nice parabola, you would have line, 

line, line. That mimics it, and that is good for some 

things, but also you lose precision. And the more precise 

you would like to make that piecewise linear 

representation, the more additional variables you're 

adding to the optimization model, which makes it run not 

quite as quickly. So there is a balance there, precision 

versus runtime. But now with our last version 11.0 and 
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what we're getting into in 12, which is going to be coming 

out in a few months, is just more general non-linear and 

what we call non-convex optimization. The assumption of 

convexity, which is if you think of a feasible region, it's 

convex if there's no dents in it. 

 00:59:42 Take any two points, draw a line between those two 

points. If every line that you could draw between any two 

points is completely in the set, then that's a convex set. 

And if you don't have that, then some of the previous stuff 

I've been talking about of mathematical optimization, it 

just gets really difficult, somewhat falls apart. But we 

understand that those problems are the ones that people 

want to solve, so the non-convex stuff is something that 

we've made a lot of strides on. And then just 

incorporating more non-linear functions that you can use 

and not piecewise approximating them. So not 

approximating them with a bunch of straight lines that 

mimic curves, but the actual curves themselves and 

implementing algorithms that solve those, which I'm still 

getting myself up to speed on what those are doing. 

 01:00:31 But just being able to solve more realistic problems at the 

speed that people need to solve them is what we're 

looking into and what we're trying to improve on version 

after version. So our bread and butter is that mixed 

integer linear program, and we're still always having 

improvements there, but we are also looking into these 

non-linear, non-convex problems as well, which are 

everywhere as well. So we are trying to become the solver 

for everything. And I think one approach that we are 

trying to take to that that's a little bit different than 

maybe what some people would think would be our 

competitors, is there are some other tools out there that 

do a lot of local optimization for non-linear problems, and 

they don't worry about things like the mixed integer 

portion of your decisions. We are still very much what 

Gurobi is about, is this global optimality. 

http://www.superdatascience.com/813


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/813   
29 

 01:01:38 We are provably giving you the best solution for your 

problem. May take a little bit longer in some aspects, in 

some problems, but we feel that that is something that is 

super important. I think I gave an example last time of if 

you're a major airline and you could reduce your fuel 

costs by 1%, that's massive. If you're just any bigger 

company and you could reduce costs by the tiniest bit, 

that's really good. So having that global optimality, that's 

something that is guaranteed with how we approach 

optimization, is really important to us and that's what we 

want to put into our products. 

Jon Krohn: 01:02:20 Nice. So handling more variables like quadratic 

relationships as inputs or outputs as well as being able to 

always model globally across the whole decision space as 

opposed to just locally, are key elements there for you. So 

tell us a bit more about why integer variables are so 

complex to model. So that isn't something that would 

necessarily be intuitive to me. 

Jerry Yurchisin: 01:02:49 You would think that if I have, I guess everyone in your 

minds, let's do a mind exercise... have a two-dimensional 

graph and just put some sort of polygon on there and 

make it convex. I just gave you the idea of what convexity 

is, so no dents in it. There's no dents. So just draw a 

polygon in your head, and then within your head 

highlight the integer dots. So where one and one cross, 

where two and two cross, where one and two cross and 

everything like that, you put a dot instead of just having a 

shaded region. The shaded region is what we would call a 

relaxation of an integer program. The dots are the actual 

points that you want as your solution. So you might be 

thinking, "Well, if I have less points, then it should be 

easier to solve." And it's exactly the opposite. 

 01:03:52 Essentially, the way that the main algorithm works for 

solving linear programs, it's called the simplex method. If 

you have this polygon in your head, what it does is it 
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actually, because of the math behind it, the optimal 

solution must occur at a point in which two of the outside 

lines meet. So essentially, a vertex of your polygon, that's 

where the optimal solution must be. It can't be anywhere 

else. Well, I'll take that back slightly. It can't be on the 

inside. You can have multiple optimal solutions if you 

have two points and then the line connecting them are all 

going to be optimal with the same objective value. So you 

have your choice in a sense, but it's going to typically be 

one of those corner points of your polygon. So because of 

that, because it's guaranteed that that optimal solution is 

going to be on the outside there, all of those integer points 

that you have on the inside are probably not going to be 

right there. 

 01:05:03 So unless you just happen to have that be the case, now 

you need to take the main algorithm that searches the 

outside of your polygon, searches it very smartly. Now 

you have to do something else. And the way that that's 

done for the mixed integer programming is it takes that 

problem and it breaks it into the main algorithm that is 

used for that is what we call branch and bound. But 

there's another one I can talk about in a second. Branch 

and bound, essentially what that does is let's say that you 

have this polygon and your optimal solution is where X is 

1.5. We know that we want an integer value for X, so let's 

set up two sub problems. One where X is less than or 

equal to one, and then one to where X is greater than or 

equal to two. So you're splitting off of that, you're 

branching off of that variable because we want X to be an 

integer and it can't be 1.5. 

 01:06:07 So let's say it's either going to be less than or equal to 

one, greater than or equal to two, and then we solve more 

linear programs with the simplex method. And you keep 

doing that until you get to a criteria that says this is your 

mathematically provable optimal solution. So essentially 

that's part of why it's more complex to have that integer 
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stuff is because you need to run possibly exponentially 

many linear programs. What I mean when I say linear 

program, where you don't have this integrality restriction. 

So you let loose the rules a bit, solve, and then you 

implement more rules as you go. So that's the iterative 

process that happens. So eventually you'll get to 

something that says all of my decision variables I want to 

be integer are integer. I have a couple other things that 

happen about lower bounds and upper bounds are 

meeting. And then because of all of that, boom, it's math 

says that we're at an optimal solution. 

Jon Krohn: 01:07:11 So I'm gathering here that the fundamental problem when 

you want to have integers in your model is that you can't 

do calculus jumping from point to point. Calculus only 

works over a curve. 

Jerry Yurchisin: 01:07:22 More or less, yeah. 

Jon Krohn: 01:07:24 So I think that's fundamentally the idea here is that you 

come up with ways of artificially constraining things so 

that you can work over a curve. So by creating these 

relaxing constraints, like you said, but doing that a whole 

bunch of different ways, you're able to view a problem 

from multiple different perspectives around a point and 

say this individual point actually is the best from all the 

possible points out there. 

Jerry Yurchisin: 01:07:58 Yeah. And I said something like, "Then the math says 

you're at an optimal solution." So it is worth maybe diving 

a little bit into how that happens. So going back to a 

linear program, so let's say all of your variables are 

continuous, which makes it easier. So the polygon in your 

head is all just shaded and don't worry about the 

individual dots in between. So worrying about the corner 

points and stuff like that, that's a linear program where 

all your decision variables are continuous. For every 

linear program, there is something that's called a dual 
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problem. So it's just another representation that's like a 

mirror image I guess, in a sense. If you're maximizing 

your regular problem, the dual is a minimization problem. 

And the math behind it essentially says that you have 

your regular problem and your dual problem. If the 

objective function value at the optimal point for each of 

those problems, one going up, one coming down, is the 

exact same value. And that's proven with fancy math and 

proofs and stuff like that. And to use the terminology, the 

original problem is called primal, and your dual problem 

is called the dual. So your primal problem for its optimal 

solution has a particular objective value. 

 01:09:45 The dual has the same objective value, but different 

variables. I won't go into details of how they translate to 

one another, but it's pretty easy to actually go between 

one and the other. But essentially one's going up, one's 

going down. When they meet, that point in which they 

meet is your optimal solution. And so that's part of a little 

bit the math behind it. How we can say "we guarantee" is 

because people have proven with the fancy math that if 

this happens, then that's how you know that a linear 

program is giving you the optimal solution without having 

to exhaustively search all points and exhaustively search 

everything. And when I say stuff like the smart math, the 

smart things that are happening, that's a little bit of a 

glimpse into how that works. 

Jon Krohn: 01:10:39 Nice. Very cool. I am always learning a ton from you, 

Jerry. You're a great explainer of complex concepts and 

you're great at creating visuals as well. It's interesting, as 

we're recording, I'm not usually closing my eyes and 

imagining polygons. 

Jerry Yurchisin: 01:10:54 I thought you were taking a nap. I thought I was boring. 

Jon Krohn: 01:11:00 So onto another tricky technical question for you that I'm 

really curious about is NP hard problems. So 
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definitionally tricky. So tell us what NP hard problems are 

for those of us who don't know what they are and why we 

shouldn't just ignore them. And then critically, why NP 

hard problems that people wouldn't have even tried five 

years ago can now be solved in seconds with 

mathematical optimization. 

Jerry Yurchisin: 01:11:32 So my quick little rundown of computational complexity 

is you may have heard something like, "Is P equal to NP?" 

That type of argument. And so essentially what that's 

talking about is the algorithms to solve problems. What is 

their computational complexity? So if something is in 

class P, that means that there is a polynomial time 

algorithm that will give you the solution. And those are 

nice, those are easy, that they run quickly and 

everything's pretty good with. That's where you'd like to 

be. Then NP is what we call non-deterministic polynomial, 

and essentially there's no polynomial time algorithm 

known to solve it, but if you're given a solution, you can 

quickly verify that it's correct. So to actually solve the 

problem, very difficult, but to verify can be easy. Then 

after that is what we call NP complete, which is the most 

difficult of the NP problems. So if you're able to come up 

with a solution or an algorithm that solves one of these 

quickly, then you can solve all the other ones in the whole 

class very quickly. So it's like the domino that would 

make life easy for everybody in the computational space, 

but that's probably not going to happen. But then there's 

NP hard, which is the same thing. But unlike the NP 

complete, you don't necessarily be able to have to verify a 

solution quickly. So it may be actually very difficult to 

verify if you're asking it, "Is this solution the optimal 

solution?" That may be hard to just find out on its own. 

 01:13:29 So that's where actually mixed integer programming is, is 

that NP hard. So you hear about this thing, "These 

problems are so difficult to solve," and yes they are. But 

the thought is, if it's in this category, don't even try to 
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solve it with an exact solution. Which is something that, 

again, like I say, it's just what Gurobi provides and what 

mixed integer programming, the solvers like us, what we 

provide is that global exact solution. We need to use 

heuristics. We need to use approximations. And so it's 

just a scary word or a scary phrase or something and it 

just turns people away from it and like, "I'm not even 

going to try. I'm not even going to attempt." And I came 

across this. I was doing a webinar and I was talking 

about, we have essentially a Python package called 

Gurobi Opti Mods, which is prepackaged optimization 

problems where you just feed some data, it runs, you 

don't have to worry about any modeling and it gives you 

an optimal solution. 

 01:14:38 So it's very cookie cutter problems. And one of those is 

what we call a maximum weighted independent set. And I 

won't worry about going into that. You can watch the 

webinar on YouTube and find out for that yourself, but I 

was looking at the documentation for a Python package 

that claims to solve this problem, and there's a line in 

there that just says, "The actual problem of this is known 

to be NP hard," so you're just immediately better off using 

approximations, using whatever, using some heuristic to 

find the solution. It just immediately put its hands up. 

And this was documentation saying that, and it was 

documentation for the package itself. So I guess, sure, it's 

not going to say use other stuff, but whatever. 

 01:15:35 In that webinar, I just gave it a very small problem of 

taking nodes in a network and finding a subset I think 

that covers all the arcs. I'm blanking on it now, but again, 

just watch the webinar. But it was trying to solve this 

very simple version of it and it was just a 10 node 

problem and it was giving wrong answers. Looking at the 

graph, I could visually see that it was wrong and it was 

giving suboptimal answers. How would you think about 

how this would perform at any type of scale, 100s, 1,000s 
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of nodes. You're trying to do some social network analysis 

and you're running this package and it just giving you 

clearly suboptimal solutions. So there is this just NP hard 

fatigue. And then that translates into mixed integer 

programming of, "It's a very hard problem. Don't try 

solving it with a solver like Gurobi because it's just so 

complex, it's just never going to work." 

 01:16:46 But that was the case like 5, 10 years ago. And again, all 

the stuff that we were talking about before with our 

algorithmic improvements, hardware improvements, it's 

just the things that were that's just "not even worry about 

it." Oh, we have a mixed integer programming problem 

with 10,000 variables and people are scared of that and 

thinking, "That's impossible to solve. You'd never solve 

that in any type of time that would make sense." Those 

are being solved in half a second, a second, 

instantaneously nowadays. So it's just yes, that is true. 

 01:17:20 If I kept the whole thing behind this computational 

complexities, if you expand the set of inputs, you're 

growing exponentially. Yes, eventually you can grow the 

problem such that it'll take Gurobi forever to solve 

something. That is true at a certain size. But again, now 

we're getting to the point with all the hardware, the 

software and everything where real problems are now 

manageable, real problems are now solvable in real time 

for some things. Sometimes, you may have to concede a 

little bit of that realism to get a little bit of performance or 

something like that, but that's trade-offs you make for 

everything. You'd make that with machine learning 

training. I want to be able to retrain models quickly, so 

you'd make some sacrifices there, things of that nature. 

So there's always that balance for everything, but with 

mathematical optimization, yeah, there is that stigma and 

part of our message is, "Hey, try us again, then you may 

be pleasantly surprised." And what I will add to that is 

there is a difference between, I may have talked about 
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this last time, between a commercial solver, yes, Gurobi 

eventually you do have to pay and buy a license from us if 

you want to use what we have at the right scale and 

everything. Yep, that is true, but we have the best minds 

in optimization building that for you. So yeah, they're not 

doing it for free yet. I asked, they say no. But you can use 

open-source solvers and I think that's a great way to try 

and solve real problems at a smaller scale and get 

yourself going and try and understand, "Hey, does this 

have business value for me? Is this going to be helpful?" 

 01:19:14 Yeah, you may have to condense things, but it's a good 

way to learn, good way to get started. And then by the 

time you would need something like Gurobi, your 

problems probably have expanded to a point in which it is 

worthwhile to save that, to have something that takes us 

open-source solver maybe days or weeks to run. And 

we've had that sort of happen where a now customer or 

someone who's trying to evaluate us would say, "Yeah, 

this with an open-source solver would literally take a 

week to run. We just click go on it and just came back 

when it's done a week later it would be there." Now it's 

solving in 10 minutes, 20 minutes or something like that. 

Something that used to take a day or it would take a day 

with open-source, now takes 20 seconds, 10 seconds to 

solve with a commercial solver like us. 

 01:20:05 So part of that is yes, the problem itself is NP-hard. It's 

very difficult. So if you were to attack it with something 

that is an open-source solver, keep that in mind that 

there are options past that. But I don't want to discourage 

the use of open-source, because it is the perfect way, a 

great way to really, if you want to learn, it's a great way to 

use something that's free to understand the value to your 

business. Right now something like Gurobi you can 

download, if you PIP install Gurobi, you can use a 2000 

by 2000 sort of trial license to get yourself understanding, 

again, that type of... When I say 2000 by 2000, it sort just 
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comes out naturally to me, because I know exactly what 

I'm talking. 2000 decision variables, 2000 constraints. 

 01:21:05 So when you think about the number of burrito trucks 

that you're putting out there and the number of 

constraints that you're adding to that, yeah, it's a fairly 

small problem, but it's really great way to help you learn 

and understand and sort of just build a small scale thing 

that says that that's somewhat representative of your 

problem. And then if you need to expand, then hit us up 

again and we'd be glad to give you free evaluations and 

help you work through that as well. So there's a couple of 

things there that I wanted to mention about if you try 

optimization and it fails not to think about why it might 

be failing and if you are using an open-source solver, 

many of them are really good. Some of them could be 

good for your problem and you may never need anything 

like Gurobi, that's certainly possible. But once you get at 

scale, there's a decent chance that you may need 

something like us. 

Jon Krohn: 01:21:59 Nicely said, and that all made perfect sense to me, the 

open-source trade-offs versus using a commercial 

solution like Gurobi, particularly when you get to at scale. 

But the way that you got into this was we started by 

talking about NP-hard problems. 

Jerry Yurchisin: 01:22:13 I deviated. 

Jon Krohn: 01:22:16 And so just I wanted to say that, because I don't think 

you mentioned this, that the NP in NP-hard stands for 

non-deterministic polynomial time problem. And it's kind 

of another way of saying a very complex problem, because 

there isn't a deterministic for sure. You're not going to be 

able to follow the same path to get the exact same answer 

every time. Polynomial meaning things like having 

quadratic relationships, not just linear relationships in 

there. And so I don't know if you happen to have off the 

http://www.superdatascience.com/813


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/813   
38 

top of your head, Jerry, like real world NP-hard problems 

that maybe a few years ago no one would've dared to try 

to tackle, but now you can tackle potentially in seconds 

with Gurobi. 

Jerry Yurchisin: 01:23:02 It's a little bit difficult to say one type of problem, because 

all of MIPS, Mixed Integer Layer Programs, they're all kind 

of similar in a sense, whether using them in supply chain, 

whether using them in finance, whether using it 

scheduling, they all sort of translate to the same thing at 

some point. You take your decision, you take the verbal 

problem and you put in algebra. Once you get in that 

algebraic form, they're very similar in what you would see 

sort of written down pen and paper. So it's kind hard to 

distinguish that. But at the same time, operations 

research folks, they love to talk about sort of problem 

archetypes. So very common things like the knapsack 

problem is how much stuff can I fit in knapsack to 

maximize its utility before I go on a hike? Something like 

that. 

 01:23:53 Another one is the traveling salesman problem, and this 

is something that you see a lot of... You might see some 

neural networks trying to tackle this problem. You might 

see quantum optimization trying to tackle this problem 

and obviously mathematical optimization, Gurobi trying 

to tackle this problem. It's just a very common easy to 

understand problem. And traveling salesman problem if 

you're not familiar is you have a set of cities that you 

want to visit, the salesman wants to go and sell stuff to 

each of these cities. What is the shortest path I can cover 

all of those and then get back to my starting place? 

What's the shortest path that I can take? A common thing 

is I want to travel to all 50 or say all 48 state capitals, 

what's the shortest path that I can take? You don't want 

to drive from New York to California to Florida back to 

Washington. That's obviously not great. 
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 01:24:52 You want to find the shortest path to travel all those 

things. So that may be sort of the problem that people go 

to as like this is an NP-hard problem and it's sort like the 

go-to, this one's very difficult, because it is difficult to 

solve. But I think now this is where I might have to have 

to come back and do some research and stuff like that, 

but you can solve problems that the key metric I guess or 

the key sort of quantifier of a traveling salesman problem 

is the number of cities. And there would be, if you want to 

do a 50 city problem even five years ago, 10 years ago, 

that's something that would be like, "Oh man, that's kind 

of difficult to solve." Now we're into thousands and stuff 

like that where you can easily solve a traveling salesman 

problem with that type of size relatively quickly or at least 

quickly enough that makes sense for whatever real 

application that you're trying to solve. So that's sort of the 

go-to thing that people like to talk about. 

Jon Krohn: 01:26:13 I see. My last topic area for you, you've been very 

generous with your time today. We've gone well over the 

recording slot that we'd agreed to. But one last topic area 

I have for you is around the history of optimization. So it 

relates to the same kind of thing. You just said that a few 

years ago you might have stopped the number of cities 

that you might've tried to fit into the traveling salesman 

problem might have been 50 and now it's thousands. So 

can you stretch back a bit further with the history of 

optimization and tell us why it initially wasn't popular? 

Maybe what some of the first use cases were and how 

that brought us to where we are today? 

Jerry Yurchisin: 01:26:52 There's sort of two big names and I have it in front of me 

so I don't mispronounce it. Kantorovich in 1939 and then 

George Dantzig in 1947, those were two of the people who 

really brought linear programming as I was describing or 

earlier brought that sort of to the forefront. But Dantzig 

gets a little bit more of credit. He's sort of like the name, 

because he was the person who invented the simplex 
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algorithm, what I was talking about before, going from 

corner point to corner point in a polygon. But using that 

algorithm to solve a linear program sort of brought the 

linear program as an important planning and decision 

making tool around that time. So one of the first 

applications of that is if you ever go to an OR, Operations 

Research site or something about mathematical 

optimization and it's like here's our first example. It more 

or less is going to be something called the diet problem. 

And that was a very small problem that was developed for 

I believe the US army to help. 

 01:28:12 How can I feed troops? How can I feed a battalion or 

something like that? How can I feed that group of 

individuals making sure that they have the nutrition that 

they need but at minimal cost? So that was one of the 

original applications of linear programming way back 

when. Things like and I talk about the integer 

programming was developed more or less in the mid '50s 

with Dantzig and other folks as well were adding to that. 

So around that time was when a lot of the initial theory 

was developed. The problem was once you tried to get 

past that real simple problem, which was nine constraints 

in 77 variables, so that's a very, very small problem, 

exceptionally small. 

 01:29:11 Once you get past that, the computational power just did 

not exist. So fast-forward to maybe something like the 

'70s was when we actually started to get a little bit more 

of the information, a little bit more of the power to 

actually solve some of these slightly larger problems that 

were still relevant to businesses, still relevant, but we 

actually be able to solve them in any type of speed that 

would make sense. It's not taking days or weeks or years, 

but something that you can actually use. And a lot of 

these problems were for oil and gas companies, for 

refineries was one of the original adopters of linear 

programming and they were actually very much into 
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funding this type of research in order to push forward the 

theory and the technology and everything like that. 

 01:30:10 So essentially what the main bottleneck was, was 

computational power, and that is something that is very, 

mirrors a lot of why it took so long for deep learning to 

also become the powerhouse that it is today is because 

for deep learning, the data wasn't there that we needed to 

exist to really use it, but the computational part wasn't 

there as well. Enter GPUs and all of a sudden boom, this 

whole new thing sort of just explodes. And that's sort of 

what mathematical optimization kind of hasn't had just 

yet. 

 01:30:51 I mean, obviously I've been talking a lot about how the 

CPU and performances and all that stuff has really 

increased over the last 20, 30 years and stuff like that to 

problems that actually that were never be able to be 

solved, now they can be solved in minutes and seconds. 

But there wasn't a new technology that came on the 

scene to really spur it like GPU's did for deep learning. So 

it sort of just got kind of lost in the shuffle a little bit. It 

definitely found its niche. Niche is too narrow of a word I 

guess, but it has its early adopters. So I mentioned 

supply chain a lot. That's sort of one of the big ones that 

became an early adopter to mathematical optimization 

and showed a lot of business value there. But then once 

you get into the '90s and things like that is where a lot of 

people started putting effort into the algorithms and really 

improving that as well. 

 01:32:07 So there's some groundbreaking research that really sped 

up that part of it and just going, adding to that time over 

time over time. And then Gurobi came on the scene in 

2008 from a company one of our competitors called 

CPLEX, which is owned by IBM. They were a bunch of 

people there, including all three of our founders were at 

CPLEX and making awesome advancements in the LP 
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algorithm space. But then just decided like, "Hey, we're 

getting a little bit slow. We want to take a different 

approach." So that's where Gurobi came in. So our three 

founders decided to start a new company where creating 

the fastest, most powerful mathematical optimization 

solver that we possibly can became the top priority. 

 01:33:15 So yeah, there's a lot of early adopters from a theoretical 

perspective saying, "This could be really cool." Just the 

computation stuff wasn't there, it got there a little bit. Oh, 

people are like, "This is kind of nice, but again, let's solve 

more realistic problems." Again, sort of entered that same 

bottleneck of computational inefficiency and now that 

things have been steadily increasing from people making 

the algorithms better, from people making the hardware 

better, again now we're actually at a point where over the 

last few years really seeing businesses solve awesome 

problems that are at the scale that they need. 

Jon Krohn: 01:33:56 Nice. Great recap there. It's awesome that you had 

prepared notes so you could speak so specifically about 

dates and people, significant events, fantastic. No doubt 

there will be more mathematical optimization in the 

future as more and more people learn about it through 

things like this podcast and as the solvers become more 

and more efficient. Amazing episode, Jerry. I learned so 

much from you yet again. Do you have a book 

recommendation for us again this time? 

Jerry Yurchisin: 01:34:27 Sure. Last time I dropped some, hey, let's get into 

optimization as one of the books I cheated and used too. 

This one's going to be a little bit different. I am a child of 

the '80s and '90s, so one of the big things that a lot of 

people had in the '80s and '90s was some sort of Nintendo 

system. So the book that I'm going to highlight now is 

called, Ask Iwata. So Satoru Iwata was a legendary CEO 

at Nintendo, was given a lot. He's sort of given a lot of 

credit for just fostering a very creative environment that 
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allowed developers and people that work there to really 

push the boundaries of imagination and things like that 

in game development. So it sort of goes into his leadership 

and management philosophy, so sort of emphasizing 

things like empathy for your workers and customers and 

really trying, really putting your heart and soul into what 

you're trying to create. And things like innovation, risk 

taking and how that's very important for companies to 

thrive. 

 01:35:54 It's just something that I found to be extremely interesting 

and something that I sort of took to heart a little bit in 

terms of risk-taking, particularly it's kind of just like 

coming to a position like this at Gurobi was a little... I 

could keep working in consultancy doing a lot of cool 

projects and stuff like that, but being able to take a risk 

and start really getting a message out to data scientists 

and the AI community about optimization, I thought that 

was a big risk. It could have gone nowhere and I could 

have not be on podcasts like this talking to awesome 

people like you and everything. Like that could have just 

tanked and then I'd be back to where I was. I sort of took 

that to heart. So I think that could be a great thing for 

anyone else who's interested in the history of Nintendo 

and things like that could be interested to dive into that 

book. 

Jon Krohn: 01:36:51 Great message there. And it's funny, I'm also a child of 

the '80s and '90s. I remember one of my earliest 

memories, I must have been four years old on a bus. I 

remember I was leaving kindergarten to go home on a bus 

and I was sitting next to some kid, I have no idea who he 

was, but he talked about how soon there was going to be 

a Super Nintendo and it blew my mind and that might 

literally be my earliest memory [inaudible 01:37:20]. 

Jerry Yurchisin: 01:37:20 That's a good one, that's a good one to have. If you're 

going to keep one, that is some of my first memories is I 
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have a older brother, if you have older brothers, they tend 

to pick on you a little bit and beat you in things 

mercilessly and getting beaten in video games is one of 

my earliest memories. I don't know if he's going to ever 

hear this or anything, but I'm significantly better than 

him now for a long time. I have significantly outpaced 

him. But no, it's all in good fun and those types of fun 

playing games with people and stuff like that is something 

I look very fondly back on and definitely miss those times 

a little bit hanging out on the couch and playing games 

together is one of my favorite past times. 

Jon Krohn: 01:38:13 Yeah, I do miss when we were all kids and everyone just 

had all this time and you could just phone a friend up 

and hang out and you just knew that they were at home 

just looking for something to do and you don't have that 

as an adult. I guess we have retirement to look forward 

to. 

Jerry Yurchisin: 01:38:30 That is true. 

Jon Krohn: 01:38:32 In the meantime, between listening to this episode and 

retirement, Jerry, where should people be following you to 

get your latest thoughts? 

Jerry Yurchisin: 01:38:40 Sure. Probably LinkedIn is probably the best way. That's 

where I'm most active, because a lot of the stuff that I put 

out there is also through Gurobi as well, and you can stay 

connected with all of the coolest advancements that I was 

talking about with non-linear capabilities and all this 

other stuff. You can definitely find out all of our awesome 

events. If you want to go to Las Vegas, if you're looking for 

a reason to go to Las Vegas, we are holding a summit in 

mid-September. It's going to be great. I'm going to be 

hosting a data science track so we can sit down together 

and have fun with all these hands on stuff if you're 

interested in that. And you'll be getting a lot of updates 

through LinkedIn on that. I'm also active, somewhat 

http://www.superdatascience.com/813


 
 

 
 
 
 
 

Show Notes: http://www.superdatascience.com/813   
45 

active on Threads, but by and large, LinkedIn's the way to 

get to me or just email me. That's cool too or LinkedIn 

message. I'm happy to chat with anyone who's interested. 

Jon Krohn: 01:39:47 Nice. And yeah, I just checked out the Gurobi Summit 

coming up September 19th and 20th at not just anywhere 

in Las Vegas, but the Wynn Encore Resort, which is as far 

as I'm aware, the premier spot. It's the only place I've 

stayed in Vegas and it was a really cool, beautiful spot. 

Jerry Yurchisin: 01:40:06 Awesome. Yeah, we're super excited about the whole 

event and I was talking about NVIDIA, they're going to be 

coming to speak there as well, so you can hear more 

about the relationship between Gurobi, mathematical 

optimization and the powerhouse known as NVIDIA. 

Jon Krohn: 01:40:22 Nice. And actually registration is about a 10th of what it 

usually would be. Registration is $200 to $300 depending 

on when you sign up before or after September 3rd. But 

typically I'd expect to be going to a conference in Vegas at 

the Wynn Encore, it'd be about 10 x that. So yeah, it does 

look like a great excuse and you wouldn't have to bug 

anyone at your company for too much budget to head out 

there and check it out. Very nice. 

Jerry Yurchisin: 01:40:55 Cool. 

Jon Krohn: 01:40:55 All right, thanks, Jerry. Thank you so much for taking all 

the time with us today. It's been awesome. I have learned 

a ton and yeah, can't wait until the next time. 

Jerry Yurchisin: 01:41:03 Awesome. Sounds good, Jon. I really appreciate it and 

yeah, looking forward to more conversations. 

Jon Krohn: 01:41:14 What a brilliant, well-spoken guy. In today's episode, 

Jerry filled us in on how mathematical optimization is 

prescriptive, such as helping with business decisions 

relative to ML and stats predictive nature. And he talked 
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about how mathematical optimization is the ideal tool for 

the job whenever there are many real world constraints to 

factor in and you'd like to maximize or minimize 

something. Talked about how you can learn about 

optimization hands on yourself using his Jupiter 

notebooks and online courses. We've got links to all of 

those in the show notes. He talked about how GPUs are 

not ideal for optimization, but state-of-the-art CPU's, like 

the 72 core NVIDIA GH200, allow optimization operations 

to run 23% faster and use nearly half as much energy. He 

talked about how the latest and greatest mathematical 

optimizers can handle quadratic inputs and outputs and 

how NP-hard problems like the traveling salesman 

problem and the knapsack problem can now in some 

cases be handled in seconds by mathematical optimizers 

while just a few years ago we might not have even 

attempted to tackle such complex problems. 

 01:42:19 As always, you can get all the show notes including the 

transcript for this episode, the video recording, any 

materials measured on the show, the URLs for Jerry's 

social media profiles, as well as my own at 

superdatascience.com/813. Thanks of course to everyone 

on the Super Data Science podcast team, our podcast 

manager, Ivana Zibert, media editor Mario Pombo, 

operations manager Natalie Ziajski, researcher Serg 

Masis, writers Dr. Zara Karschay and Silvia Ogweng, and 

founder Kirill Eremenko for producing another 

outstanding episode for us today. 

 01:42:48 We're enabling that super team to create this free podcast 

for you. We are very grateful indeed to our sponsors. You 

can support this show by checking out our sponsors links 

which are in the show notes. And if you are interested in 

sponsoring an episode, you can get the details on how by 

making your way to jonkrohn.com/podcast. Otherwise, 

please share, review, subscribe, all that good stuff. But 

most importantly, just keep on tuning in. I'm so grateful 
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to have you listening and hope I can continue to make 

episodes you love for years and years to come. Till next 

time, keep on rocking it out there and I'm looking forward 

to enjoying another round of the Super Data Science 

podcast with you very soon. 

http://www.superdatascience.com/813

