

Show Notes: http://www.superdatascience.com/813
1

SDS PODCAST

EPISODE 813:

SOLVING BUSINESS

PROBLEMS

OPTIMALLY WITH

DATA, WITH JERRY

YURCHISIN

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
2

Jon Krohn: 00:00:00 This is episode number 813 with Jerry Yurchisin, data

science strategist at Gurobi.

 00:00:10 Welcome to the Super Data Science Podcast, the most

listened to podcast in the data science industry. Each

week we bring you inspiring people and ideas to help you

build a successful career in data science. I'm your host,

Jon Krohn. Thanks for joining me today. And now let's

make the complex simple.

 00:00:29 Welcome back to the Super Data Science Podcast. Today

on the show we've got Jerry Yurchisin, an extraordinarily

clear communicator of complex topics and a world leading

expert on real world applications of mathematical

optimization. Jerry works as a data science strategist at

Gurobi Optimization, a leading decision intelligence

company that provides mathematical optimization

solutions to the likes of Uber, Air France and the National

Football League, Indeed, a wild 8 out of 10 Fortune 10

companies use Gurobi. He previously spent eight years as

a mathematical consultant where he paired mathematical

optimization with machine learning stats and simulation

to inform decision making. He was also previously an

instructor at the University of North Carolina at Chapel

Hill, where he obtained his Master's in Operations

Research and Statistics. He holds an additional Master's

in Applied Math from Ohio University.

 00:01:33 Today's episode may appeal most to hands-on

practitioners like data scientists and ML engineers, but it

does also have tons of content that will be of interest to

anyone who'd like to leverage data to make better

commercial decisions or optimize commercial processes.

In this episode, Jerry details what mathematical

optimization is, the kinds of real world problems where

mathematical optimization is a far better approach than a

machine learning or statistics approach. The history of

mathematical optimization, including why it wasn't

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
3

popular until recently, and the cutting edge hardware and

software innovations in mathematical optimization today.

All right, you ready for this outstanding episode? Let's go.

 00:02:15 Jerry, welcome back to the Super Data Science Podcast.

It's awesome to have you here. You were here not that

long ago. So, you were in episode number 723, which

aired in October of 2023. So, less than a year ago. And we

had to have you back on the show, because that episode

much more so than almost... It's very hard to do one of

these things where you're like, "More than any other

episode." I don't know, there's hundreds of episodes, but

it's certainly up there in one of the top percentiles of

episodes that completely blew my mind, because we

talked for over an hour about mathematical optimization

and how useful of a tool it is in data science alongside

approaches like statistics and machine learning. It's this

completely other tool that you can be leveraging to solve

specific problems that you're not solving optimally if

you're trying to use one of those other approaches. So,

wanted to have you back on and dig in even more detail

today. Welcome back to the show. Where are you calling

in from today?

Jerry Yurchisin: 00:03:26 It's great to be back. I'm calling in from good old Vienna,

Virginia, which is just outside Washington D.C.

Jon Krohn: 00:03:32 Yeah, welcome back. Something that we talked about

during your appearance last time that gave me a really

crystal clear idea of mathematical optimization was this

thing called the Burrito Optimization Game.

Jerry Yurchisin: 00:03:48 Indeed.

Jon Krohn: 00:03:50 And so, anybody listening right now, they can go to

burrito.gurobi.com and we'll have a link to that in the

show notes. And it allows you to play in this fictitious

world where you're setting up burrito carts around

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
4

commercial areas, different parts of a town, and you're

trying to place the burrito trucks in the optimal locations

to maximize your profit.

Jerry Yurchisin: 00:04:16 Exactly.

Jon Krohn: 00:04:18 So, that scenario illustrates for me... If anybody's

wondering when do I need mathematical optimization,

you can just head there. It's a free thing you can try out.

You just create a login and then you can play around with

it as much as you like. And it provides a really clear sense

of when mathematical optimization is the ideal technique

for a data science problem, because there are so many

constraints in the problem. So, you can have any number

of trucks, you can place them in lots of different

locations.

 00:04:57 There are different weather scenarios. There are these

external factors. All of these things that can be modeled,

but are a lot... But, provide a lot of specific constraints

where you might not want to fit just any number, like you

would with say a regression model, but where there's

some range of specific values that are reasonable.

Because, you can't have negative trucks, you can't have

more trucks than you have in your inventory to be able to

send out. So, I don't know if you want to talk about in a

little bit more detail maybe that... The burrito game, or

some other kind of example, that recaps for our listeners,

some of the content that we covered in that preceding

episode number 723 before we get onto some new

material.

Jerry Yurchisin: 00:05:43 So yeah, the Burrito Optimization Game is something

that we really feel is a great way just to dive in to

understanding optimization. And two of the things that I

think really are illustrated there is, one, is this addition of

constraints to decision making. And that's again, the

main difference between mathematical optimization and

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
5

what it does versus much of what machine learning does

is the predictive nature versus the prescriptive nature.

Mathematical authorization is prescriptive. It falls in this

decision intelligence umbrella. At least that's where we

feel it fits. So, it's more about decision making as opposed

to understanding the future. So, when you have these

business role constraints things, those are things that

restrict your decisions more or less than anything else.

And in addition to that, the combinatorial complexity of

the decisions, and that's something that is really

highlighted in the Burrito Optimization Game where you

have a fixed number of places where you can place a

burrito truck to feed people lunch and your decision as a

decision maker is like a, "Yes, No, do I place a truck

here?"

 00:07:03 So, that's what we call a binary decision variable. I can

talk a little bit more about why those are super useful a

little bit later. But, one thing that I like to think about is

let's take a decision space like that. That's what we call

the possibilities of what you can decide is a decision

space or a feasible region. Those are some of the

terminology that we use. If you have 40, "Yes, No"

decisions, that turns out to be... I had the number in

front of me, it turns out to be something like the number

of possibilities is I think 1.1 times 10 to the 11th, just 40

"Yes, No" decisions. "Do I have all of them 'Yes?'" All of

them, 'No?'" What all the possibilities in between, 10 to

the 11th... Or sorry, maybe it's 10 to the 12th. And if you

take-

Jon Krohn: 00:08:03 It's a huge number -

Jerry Yurchisin: 00:08:04 Yeah.

Jon Krohn: 00:08:05 ... comprehensively large number either way.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
6

Jerry Yurchisin: 00:08:06 Exactly. And to bring that number into perspective a little

bit, if you were to take the distance from earth to the sun

in feet, that's still less, about half. It's about half. So,

that's the 10 to the 11th. And 10 to the 12th is the

number of possibilities for 40 "Yes, No" decisions. So, just

that little 40 "Yes, Nos." So, if you have 40 spots on that

burrito map, and your question is, "Do I want to place a

truck there? Yes or no?" That's already more complex

than the... The number of possibilities is greater than the

distance from earth to sun in feet. So, that's pretty crazy.

So, understanding that complexity, that just vastness of

decisions, because if you're like, "Oh, I'll just enumerate

through all of these, just plow right through it and figure

out which one of these is the best," then good luck.

 00:09:06 The earth will probably be long and exploded or

something by the time your laptop is done running that.

So, that's something that the optimization game Burrito

Optimization Game really brings home is. "Holy crap,

there's a lot of options here." And it's just for a very, very

simple game of dragging trucks. And it's fun, it's

interactive and everything like that. And then you get

more complex with different scenarios where it's...

Because, people walk to your truck and you see them

filing out of little buildings to your trucks and everything

like that. And, "Okay, what if I slightly move a truck over

here?" And you see the nuance of decision-making and

everything. And yeah, it just really drives home the

complexity of what types of problems people try and solve.

And again, I was talking about 40 binary variables, 40

"Yes, No" decisions. In practice when you go to... And

what people are using out there in the world of business

decision making and mathematical optimization, what

people really use this for is the number of decision

variables is thousands, tens of thousands, hundreds of

thousands, millions, even tens of millions for some.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
7

 00:10:25 So, you're having all of that just massive, massive

decision making capability very distinctly modeled, and

just be able to click, "Go," more or less and use a tool like

Gurobi to help plow through those decisions instead of

enumerating them and saying, "Which one's the best?"

Our special sauce solver that plows through those options

in a super smart way, and says, " This is the decision that

will give you the most profit for this problem, or the least

cost, or doing things in the most fair way."

 00:11:13 A bunch of different types of objectives that you can try

and model here. And the Burrito Optimization Game just

really talks about maximizing profit. But, there's a lot of

utility that it can be maximized, or a lot of fairness, and

things of that nature as well. So yeah, it's just a great

tool. I'm super pumped that we're able to get this going

last year. And we use it for a lot of events and it's just a

great way to understand optimization.

 00:11:45 The one thing that I do want to be... It's mathematical

optimization, while it's great for that problem, it's great

for so many other problems too. So, I don't want anyone

to do optimization or play this game and think, "I'm not

putting burrito trucks on streets, so I'm going to do

something else." No, no, no. You can use it for a whole... I

think last time I talked about all the different industries,

different use cases, scheduling and supply chain stuff are

like our bread and butter, the logistics. And there's a lot

of chemical mixing like gas and oil companies use

optimization a lot for that type of stuff. But, we're into

financial tools, finance and healthcare stuff. We're all over

the place. So, if you're thinking, "I'm in this industry, I

want to know if optimization could be good for me," go

onto our website, look at the use cases, ask ChatGPT,

"Hey, is this a good thing for optimization?" And it will

probably be like, "Yeah," because it is useful for a lot of

decision making problems.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
8

Jon Krohn: 00:12:59 Ready to take your knowledge in machine learning and AI

to the next level? Join SuperDataScience and access an

ever-growing library of over 40 courses and 200 hours of

content. From beginners to advanced professionals,

SuperDataScience has tailored programs just for you,

including content on large language models, gradient

boosting and AI. With 17 unique career paths to help you

navigate the courses, you will stay focused on your goal.

Whether you aim to become a machine learning engineer,

a generative AI expert, or simply add data skills to your

career, SuperDataScience has you covered. Start your 14-

day free trial today at superdatascience.com.

 00:13:38 Yeah, real world practical decision-making problems

across, as you mentioned there, things like scheduling,

supply chain, logistics, finance, healthcare, chemical

mixing, those are kinds of common use cases, but it

could be any industry. The key thing I think for situations

where you want to be using mathematical optimization is

that there's some outcome that you're trying to maximize

or minimize. And, I guess, that is also something that's

different about when you think about, you made the

distinction at the outset between making predictions like

predicting the future versus being prescriptive. And with

something that's prescriptive like this, you are not taking

necessarily a bunch of historical data and just trying to

say, "Oh, if my inputs happen to be these inputs, what

am I going to get?" What you're doing with this kind of

prescriptive approach with this mathematical

optimization that Gurobi offers is that you are saying,

"How can I maximize given these constraints? How can I

maximize some outcome or minimize some outcome?"

 00:14:43 So, how can I maximize profits or how can I minimize

delivery time? And then as you mentioned there, what

you call the secret sauce, the key thing that Gurobi is

offering is that, I guess, figuring out what your full

optimization space is. That can be hard, but it's not the

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
9

hardest thing. The hardest thing is then being able to

explore over that space. Which as you mentioned in the

real world, there could be millions of possible decision

points that could be binary or continuous. And so, the

key, the secret sauce, is this Gurobi solver that can then,

in a lot of situations, work extremely rapidly at optimally

solving... Approvably optimally, if I-

Jerry Yurchisin: 00:15:30 Exactly.

Jon Krohn: 00:15:31 ... remember correctly. This isn't an approximation of

what the maximum profit would be or the minimum

delivery time. It's mathematically proven to be the

maximum or the minimum, whatever you're looking for.

And it typically happens rapidly, at least in my hands-on

experiences with it. And critically it's easy to access

through, say, Python. So, you've provided lots of, and will

provide links in the show notes, to lots of Jupyter

notebooks and tutorials that you've created to allow

people to be accessing the Gurobi Optimizer through

Python code.

Jerry Yurchisin: 00:16:10 Exactly. Yeah. And what you're saying about how the

constraint part of it is a huge thing and makes things

very, very difficult. And again, this requirement for binary

decision variables for integer decision variables. If you're

building cars, you can't build half of a car, so it may be

very, very important that you're deciding things in integer

quantities. So yeah, those are a couple of the key things

that differentiate mathematical optimization from

something that you would do purely calculus based. And

you have like, "Oh, I have some curve and I want to find

the maximum minimum of it, so why don't I just take a

couple of derivatives and bada bing bada boom I'm done."

Stuff like that, while those methods are incorporated in

some things, but it differentiates from that because of all

of those restrictions, and the constraints, and the ideas

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
10

that we... If I am a binary decision variable, something

like, "Yes, No," do I want to open a warehouse in this city?

 00:17:19 You can then have "If-thens," like, "If I open a warehouse

in this city, then I shouldn't open another warehouse

within 200 miles," because why would I do that? So, then

you can build that logic into the model and then say,

"Okay, any location I build a warehouse or any location

that I put a burrito truck, I do not want to put another

warehouse or whatever truck within a certain distance

because it just doesn't make sense," or because of any

other business reasons that you may know of yourself or

people may be telling you, "This is the way we need to do

things." Mathematical optimization is really just about

modeling logic via algebra, and that's where the art of it

more or less rests is being able to take those business

problems that people are just verbally telling you and

then you say, "Okay, I understand what you're saying."

And then you translate it into some algebra and then you

translate that algebra into code.

 00:18:25 And Python is our, by and large, our most popular API,

and it's really, really good. Not just saying that as an

employee, but as someone who used it before joining and

everything that it is great. And just make that whole

process pretty seamless. And that's why mathematical

optimization as a whole, I think, it's different from

machine learning because of that. Modeling business

logic is not something that machine learning does. If your

data does not contain these cases that have happened,

then you're blind first off. And even if it does, what the

outcomes were, what the decisions were, all the other

things that can influence such a regression, let's say.

How do you know that things were being... It's just relying

purely on past data is not the approach. Because what if

the past was... Things have changed. There's just so

many underlying things that have changed, particularly if

you think of pre COVID, during COVID, post COVID type

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
11

of things. Events like that just destroy predictive models,

because how can you predict what's going to happen

during a once in a generation outbreak, when it's once in

a generation? How much data do you have on that?

 00:19:58 But, something like mathematical optimization, when

you're describing the logic of a system, like a supply chain

network, or a schedule, or how I want to invest in a

portfolio of stocks or something like that, that logic stays

the same independent among... You may want to say,

"Okay, we're in a pandemic now, I want to be more

conservative." You can then... "I want to be more

conservative with how I invest," or something like that.

Then you can really model that with logic and you can as

opposed to relying on underlying data to make some

decisions about that. And it's also not to say that these

two things shouldn't work together. They definitely do.

And that's my main message as [inaudible 00:20:47]

Gurobi-

Jon Krohn: 00:20:46 You mean the two things being machine learning and

mathematical optimization?

Jerry Yurchisin: 00:20:50 Precisely. Yeah. You should not be... I feel it should be

very, very rare case in which you build an optimization

model in which the numbers that you use there, that go

into it, are not provided by some sort of machine learning

process or some sort of intense, rigorous data analytics

process. Be it machine learning, be it statistics, be it just

really crunching some numbers and coming up with a

mean of some sort. An average. That could be fine. But,

there should be a lot of information that goes into that,

but it's just... But, mathematical optimization itself does

not rely on vast amount of underlying data.

Jon Krohn: 00:21:32 Very cool. Other than Python, what are other APIs? You

mentioned Python is the most popular API, but what

other options are there out there?

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
12

Jerry Yurchisin: 00:21:40 If you're into C, we have that. Java, .NET. I'm an avid R

user. I love R. So, you can use that as well. Pretty much

any way that you do your work, it'll be there as well. So,

we definitely make sure that we are very accessible to

anyone.

Jon Krohn: 00:22:04 Nice. We don't do as many R episodes probably as we

should, because whenever we do, they're very popular. I

don't know if you heard in episode number 779 back in

April, we had Hadley Wickham on the show.

Jerry Yurchisin: 00:22:16 I did not see that one.

Jon Krohn: 00:22:18 It's one worth checking out for all you R lovers out there.

It's all about R, because it's Hadley Wickham. It's pretty

funny, in the episode, I have my own biases. I became a

"Data scientist," before that was a term, using R, and

have since made the migration to Python and mostly

ended up using Python. And so, even in this Hadley

Wickham interview, talking to a guy who has developed

many of the most widely used libraries, even to him, I'm

like, "So, how often do you use Python," and that kind of

stuff. And he's like, "Never." That's his whole shtick, is

taking functionality or capabilities that are in Python and

bring them over to R, making sure that it is as performant

on anything as Python. And also, so coming up in a

couple of weeks, I'm anticipating episode number 817 will

be with Julia Silge, who is an iconic R author, specifically

on natural language processing with R.

Jerry Yurchisin: 00:23:25 Oh, awesome.

Jon Krohn: 00:23:25 So, that'll be a cool one for people to check out. Anyway, I

digress. Yeah, so Python is the most popular API, but you

mentioned also there C, Java, .NET, R. And a critical

thing to mention here is that despite... Prior to our

episode last year, Jerry, I hadn't really heard of Gurobi. It

wasn't something that was in my consciousness. But,

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
13

since then I see Gurobi all over the place, and I hear

people talking about Gurobi all over the place. And that is

because people who work, particularly in a corporate

setting, like at a Fortune 500 company, if I remember

correctly, it was something like 80% of Fortune 500

companies use a Gurobi Optimizer. And so, while it isn't

something that unlike R, or MATLAB, or Python, which

are these programming languages or toolkits that you

tend to learn about in university, as far as I'm aware

Gurobi... You don't have that many data scientists

coming up with Gurobi as part of their education. But, if

they're working at a big corporate that needs to be solving

these big complex problems, there's a really good chance

you are using Gurobi at one of those companies.

Jerry Yurchisin: 00:24:43 Yeah. It is one of those secret things. And actually we

just... Every so often we dive into the Fortune lists and

compare our customers to that. So, we actually just have

recent update stats and I will rattle them off here. So, of

the top Fortune 500, 35% once you get up to 250, and

notice the trend here. When you get up to 250, 43%, top

100 is 51%, top 10 is 80%.

Jon Krohn: 00:25:21 Right.

Jerry Yurchisin: 00:25:22 so-

Jon Krohn: 00:25:22 Right. That's where I got my 80% from. 80% of the

Fortune 10.

Jerry Yurchisin: 00:25:26 So yeah, mathematical optimization and particularly

Gurobi where we are everywhere in a sense, but it's just

typically hidden in some application that you may use,

and you just never know that you're using Gurobi,

because we are the engine to the car, more or less. If your

decision problem's the car, then we are the engine that

makes it go. But, you don't really care about the engine.

You hop in, you turn the key, and you go. And you go

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
14

from point A to point B, so you don't really worry about it.

If you think about something like Google Maps, and it

gives you, "Okay, to get from point A to point B here, you

should take this road, and it's going to be, this is the

quickest time or the shortest distance, or the most fuel

efficient." There's optimization there, and you just don't

even know that you're using it. And that's another

example of different types of objectives that you can have

in mathematical optimization.

 00:26:31 Do I want a minimum carbon footprint? Do I want carbon

put out there, or do I want minimum distance, minimum

toll costs? All these sort of things. Anyways, but yeah,

there's so many ways in which mathematical optimization

is there. If you schedule a delivery from any sort of

massive, one of the larger carriers, or anything like that,

and they say, "Okay, well, your package is going to arrive

at this time," there's a pretty good chance that some

optimization went into that to help them figure out what's

the way that they can get you your, whatever you just

purchased, get it to you as quickly as possible, but also in

a cost-efficient way for them.

 00:27:12 So those are the types of things in which optimization is

there, and it's there everywhere. And that's what part of

our Gurobi's message for the upcoming... I guess our, we

call it Gurobi 2.0 internally and kind of externally I guess,

but just that optimization is everywhere, and we're just

trying to highlight where it is and how you can use it and

how you can use it... And again, we believe our solver's

the best out there and thinking that if you do have such

problems, then Gurobi might be the way to go. But

overall, I think if people come away here thinking that

mathematical optimization and not... Remove the Gurobi

thing from it, just if that mathematical optimization is

something that I should learn, then I feel it's a success

today.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
15

Jon Krohn: 00:28:06 Eager to learn about large language models and

generative AI but don't know where to start. Check out

my comprehensive two-hour training, which is available

in its entirety on YouTube. Yep. That means not only is it

totally free, but it's ad-free as well. It's a pure educational

resource. In the training, we introduced deep learning

transformer architectures and how these enable the

extraordinary capabilities of state-of-the-art LLMs. And it

isn't just theory; my hands-on code demos, which feature

the hugging face and PyTorch Lightning Python libraries,

guide you through the entire life cycle of LLM

development, from training to real-world deployment.

Check out my generative AI with large language models,

hands-on training today on YouTube. We've got a link for

you in the show notes.

 00:28:48 Nice, and so if we have listeners out there who write

Python code or write R code and they want to be getting

started on using Gurobi or mathematical optimization on

some real-world business problem that they have today,

how hard is it for them to set up the problem? So we

talked about how the hardest part of this is having the

optimizer work efficiently. Gurobi handles that for us

automatically under the covers. But the thing that is

bespoke and different for every circumstance, for every

business problem is figuring out how to set that up in our

code. And so, how tricky is that? How often can somebody

do that on their own versus needing to say, engage with a

consultant that is expert at this kind of stuff?

Jerry Yurchisin: 00:29:35 To model the hardest of hard problems out there? It does

take some experience with anything. It takes some

understanding of how these particular sets of constraints

work, and again, taking the logic that someone says or

writes down and translating that into the algebraic logic

and then that into code can be tricky. But there are some

things that, specifically Gurobi and other solvers and

other platforms, and things that do, be they're

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
16

competitors or something, there is sort of shortcuts out

there where you don't have to know all of this stuff, and

you don't have to understand all of it down to its most

minute detail. So it is very easy to get started, and it is

easy to, because our simple problems are extremely

simple. But then, building on top of that, yeah, it's going

to take some understanding, it's going to take a little bit

of work, going to take some research and a lot of stack

overflow, and things like that to really get to a production-

level type of model, I'd say, at a large scale.

 00:30:56 But the journey there is, and this is sort of one of the

hang-ups of mathematical optimization in the past, is

that you needed to have a PhD in order to make this

journey from basic problem to actually doing something

at scale for a business and making an impact. Now, that's

not the case. You can just be really good at coding and

understanding logic, and you can have an impact, and

can solve problems, and you can provide solutions that

are really doing something. And that's part of why I joined

Gurobi to help get those resources out there. So I'm just

going to talk about what we put out there a little bit, but

there's a ton. I think at the end of the last episode I

referenced an optimization book that would be really,

really good again to dive into. But from our perspective,

from things we released, I did two online training sessions

that we call Optimization for Data Scientists, Opti101,

Opti201.

 00:32:07 So it was the bare basics of optimization. And then some

more intermediate level, the Opti101 series, you can find

on our YouTube page. And the Opti201 is going to be on

our YouTube page, probably in the next month or so. And

there's going to be an Opti. I think 202 is kind of how

we're phrasing it or thinking about it internally, which is

sort of more intermediate-level stuff. All of it has hands-

on exercises, hands-on notebooks, me looking at a

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
17

camera just like this and talking to people for hours and

hours, making mistakes like everyone does.

 00:32:47 And it's just a lot of fun. It's a great way to just take a day

or so to really improve some skills. And then we also have

recently launched, I think in April, something that's a lot

more massive. So, on Udemy, we have Optimization

Through the Lens of Data Science. It's a four-part course.

We teamed up with one of the best optimization minds

out there, Dr. Joel Sokol from Georgia Tech, and he walks

you through everything that you need to know about

mathematical optimization, from the absolute bare

beginnings to creating real models that, again, will have a

real impact. And just makes that journey step-by-step-by-

step, very incremental, nothing too crazy, all in Python,

and then weaves in his experiences and everything with

his consultancy stuff that he's worked on the side and

stuff that he's done. And it is a wonderful way to set

yourself on the journey. And again, it's Through the Lens

of Data Science. So it's again saying how these two things

really, really work well together, how they are super

complimentary. And between those two things, I think

you're set. But again, you can...

Jon Krohn: 00:34:22 Between the Opti101 course that's available on YouTube

now as well as the Udemy course. That's Through The

Data Science Lens, we'll be sure to include links to both

of those.

Jerry Yurchisin: 00:34:31 Awesome. And I think we were saying, How can one

person make this journey? Again, I was talking about

incremental sort of building upon, "Okay, I know this;

now I know a little bit more and a little bit more and a

little bit more. Now I can actually get to something that

makes a lot of sense." So that type of progress isn't just

for learning optimization as a whole, but it's how you

build a model. You start with a very basic premise, a very

basic problem that someone talks to you about, and then

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
18

you build a model, and then you'll get a solution that

makes no sense when you talk about it.

 00:35:11 And that's 100% expected and fine. It'll say, "Oh, put one

burrito truck here, and it'll serve everybody, and you'll

make infinite profit," and you'll be like, "Whoa, whoa,

whoa. That makes no sense. Oh, I forgot this type of

constraint, or I modeled something slightly wrong," or

something like that. Just building a model within itself is

iterative, not just learning how to do optimization is

iterative, so you're going to make mistakes, you're going

to get weird answers. Like mathematical optimization, I

call it, it's like the best cheater of all time. If you give it

the smallest little opening to have infinite profit, it will

find it.

Jon Krohn: 00:35:55 Right. Reward hacking to take the reinforcement learning

terminology.

Jerry Yurchisin: 00:35:59 Yeah, precisely. Yeah. It will do that each and every time

if it's possible. So yeah, if you find yourself stumbling a

little bit, like, "This doesn't make sense or this doesn't

make sense; why am I getting weird solutions or no

solutions?" then that's perfectly normal. The best of the

best of us still do that, and it is just part of the learning

process.

Jon Krohn: 00:36:25 So, how do you know? You talked about that iterative

process, you can get some answers that make no sense.

Like you gave the example there, where you set up

something like the burrito game, and it tells you, you can

make an infinite amount of money by having one burrito

truck that's serving everyone. And logically, you can look

at that and say, "That doesn't make any sense." And so,

when you've built a really poor model or there's some big

hole that the optimizer can exploit, that kind of sounds

like, "Okay, you can visually tell; you can logically tell this

is a problem." How do you know that you've gotten to a

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
19

place with the way you've designed your model that this

really is something that will work well in the real world?

Because you can imagine, maybe there's some

intermediate models on the way there, where to your eye,

nothing seems awry.

Jerry Yurchisin: 00:37:17 Yeah, and that's where the process that I'm talking about,

from written word or verbal to algebra to code. But that

first part is really, really important, because when you

say you have a constraint on budget or something like

that, that is very succinctly and very much declared in

the model. So it is there, and once it's in that model, then

it's guaranteed to be respected. So if there is nothing that

you can find in that translation, then you can feel very,

very confident that what you're doing is representing your

problem. So, and that is, I'm making it sound like it is

kind of easy. It can be very, very difficult to make sure

that that happens because some of that logic that I'm

talking about is very complex, and it takes some

experience, some understanding to really make sure that

that happens. And there can be ways in which you think

it's working and it doesn't, and you find out well after the

fact that there is something that is kind of going awry,

and there is no sort of silver bullet for that.

 00:38:33 I think it is experience; it is really understanding the

system that you're modeling and what makes sense. So

the burrito game, making infinite profit, obviously that's a

clear indication, but maybe if you are someone who is in

that business and really understands food service and

putting out food trucks and fleet management or

something like that from that perspective, they may

understand something that you didn't and then therefore

saying, "Oh, this kind of doesn't make sense; you should

really add a constraint to make this happen," or

something along those lines. So I would say that SME

expertise, Subject Matter Expertise on the actual problem

that you're solving, is probably the best thing to really

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
20

make sure you understand that the solutions that you're

getting are in line with what you would expect.

Jon Krohn: 00:39:39 You mentioned earlier on about how when you're setting

these things up, in addition to the kinds of tutorials you

provided, the Jupyter Notebooks there, people might want

to consult things like Stack Overflow. Now that

immediately in my mind jumped to today how I am much

less frequently using Stack Overflow, and for me, I'm

usually using Claude by Anthropic, but there's also GPT-

4o from OpenAI or Gemini from Google, these state-of-

the-art LLMs. Have you kind of pair programmed with one

of these LLMs on an optimization problem?

Jerry Yurchisin: 00:40:17 Yes, and I do it a lot to see how well it works. And

actually, that is something that I'm exploring with people

internally. We are putting together a custom GPT that will

help with some of this, and we're coming at it from an

educational perspective of this is going to help you

understand optimization modeling. I would not feel

comfortable putting anything, copy pasting code, and

putting it into production right now for anything, really. I

mean, not just optimization, but anything, literally

anything, any code generation that pops out for anything,

you got to do some checking on that. Same thing for

mathematical optimization, but it does a surprisingly

good job of making that logical connection from... There is

this incredible parallel between how I was talking about

someone states a decision problem, and you need to

translate it. That's exactly what you can do with all the

tools that you were just talking about.

 00:41:36 And so you just give it a prompt, and yeah, it'll do a really

good job. There are things that it makes mistakes on. And

we are trying to understand those, and I think it could be

later this year. We do plan on sort of doing a webinar on

that. It'll be something that'll be really cool. Again, I'm

experimenting a lot with some problems, and we also

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
21

have a couple other people who are doing that. And part

of Gurobi's innovation is, we had an internal innovation

competition, so everyone submitted ideas and things, and

one of my colleagues was like, "Hey, we should do

modeling with GPT." Everyone's like, "Yep, 100%." No

other innovation project really came close. That was the

clear winner. But yeah, it's something that I 100% think

is a great idea. You just need to take it with the proper

grain of salt that you do with everything.

Jon Krohn: 00:42:43 So for getting started, for educating yourself on how

optimization problems work and how you can be

integrating Gurobi through the Python API or the R API

into your code, having suggestions from these top-of-the

line cutting-edge LLMs, like I already mentioned, Claude

3.5, GPT-4o, and Gemini from Google, I suspect it is

similar to my experience with any of the coding that I do,

where, yeah, like you said, most of the time it doesn't

make mistakes, but because it does sometimes make

mistakes, you need to be sure that you understand

what's going on in that code. You can't just copy paste

and put it into production like you said.

Jerry Yurchisin: 00:43:27 And from our experience, the simple models, we actually

started benchmarking these too, our simple models from

our Jupyter Notebook library, and it does super simple

models extremely well. You can set it and forget it for

that. And then once you get to intermediate, there's like a

coin flip, whether or not there will be an error. And then

complex models, right now, we've seen some

improvement, but there's just some things that it just...

Particularly once you start talking about abstract ideas,

one that we had a little bit of a problem with but actually

recently saw some improvement is a 3D Tic-Tac-Toe type

of game. Okay, can you do this? Filling in minimal

number of lines in order to do something. I think it's

filling in the 3D board with minimal number of

connecting three Xs in a row or three Os in a row, doing

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
22

that. And we had some problems with just the abstract

nature of that problem. It just didn't really translate well.

So I mean, yeah, there are some things, there are some

problems, but yeah, always verify.

Jon Krohn: 00:44:47 Nice. All right, so on the topic of LLMs, companies like

NVIDIA have had explosions in their share price because

GPUs are critical to efficiently training any kind of deep

learning model. And the larger they get, so huge LLMs

like the ones I just mentioned, GPT-4 kind of class

models, Claude-3 class models, Google Gemini, these are

gigantic; you're going to need many GPUs to train over.

And so, the most cutting-edge, like H100 NVIDIA GPUs,

are in really high demand, because if you want to be

training the next generation of LLM from scratch, you're

going to need the absolutely most cutting-edge hardware.

 00:45:36 And so these kinds of processors, GPUs, they build on the

same kind of, they're called graphics processing units

because they originally were for rendering 3D graphics

and things like video games or when you're doing video

editing on your computer and the same kind of simple

matrix multiplication that is critical to doing that kind of

graphics rendering also turns out to be the kind of highly

parallelizable simple computation that we need for

training or even at inference time with deep learning

models. And as I already said, as they get really big LLMs,

the more and more critical having GPUs becomes. If you

tried to train an LLM on CPUs from scratch, it would...

Like, you gave the example of the earth exploding or

maybe our sun going nova before you would have your

model trained. So a question that I have for you is: how

does mathematical optimization relate to the kind of

device that we're training on, like a CPU or GPU?

Jerry Yurchisin: 00:46:47 So, for the question of GPUs, hey, GPUs are the cutting

edge for everything. Is that the same thing for

mathematical optimization? The answer to that is no; it's

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
23

not the right tool for the right job, which was something

that I harped on, I think last episode. Choosing the right

tool for the right job for decision problems. Well, for this,

it's like GPUs, again, Jon, as you were saying: massive

parallelization, simple operations. That's just not what

the algorithms that we have for mathematical

optimization, those are not like that. They're not hyper-

parallelizable, they're not providing simple computations

by and large. So if you do try, and right now if you try and

run typical mathematical optimization algorithms, which I

can talk a little bit more about those in a little bit, sort of

high level on what goes on there. If you try and do that,

then it's just not the right fit, and you'll suffer some

performance issues there. There is one little exception in

matrix factorization, is a very important part of one of the

types of algorithms that's used, and that's something that

can be done pretty well on GPUs.

 00:48:14 So there is some hope, and it is something that the team

Gurobi, and other folks are trying to look into. We're

always looking for the best way out there to run what we

want to run, to solve the problems that we like to solve.

So, if, at one point, GPUs are the way to go, then that's

the way that we're going to go. So it's that being said,

yeah, CPU is the way to go. But one interesting thing that

I do want to mention about, particularly with NVIDIA, is

they actually, through a customer, through something,

through the fates that be, came and sort of knocked on

our door and were like, "We heard you have really hard

computational problems for CPUs." And we're like, "Yes,

we do." So they wanted us to test out their Grace CPU on

the problems that mathematical optimization solves and

use Gurobi. So one of my close colleagues, we call him

the mad scientist, Greg Glockner, who's a VP technical

fellow at Gurobi, has been working at Gurobi for, I think,

he was employee three or four or something like that.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
24

 00:49:43 He's number one in my book. But he did a lot of testing

with other folks on our side and using their CPU

compared to sort of the established AMD processors that

we typically use for benchmarking. We found a 23%

improvement on hard problems while using 46% less

energy. So that type of improvement, like, "Hey, that's a

pretty impressive improvement from a speed perspective,

but from an energy consumption perspective," it was

something that was really interesting to see. So the CPU

environment for us, we're still improving; there's still cool

things happening out there. And from, I guess, a

computational perspective of, "All right, how much faster

is this stuff getting over time? Are you guys reaching a

plateau? Is the hardware reaching a plateau? Are the

algorithms sort of slowing down?" The answer to both of

those is not really, and as I was just talking about, there

is still room for CPU performance improvements there.

 00:51:09 There's room for energy improvements, energy

consumption improvements, and what we work on is the

algorithmic improvements as well. And I actually just ran

across this slide that we have for presentations, just

earlier today, from version 11, which was released last

November. To comparing that to our earliest versions,

where the Gurobi solver, independent of hardware, is 80

times faster. So if you think about that, 80 times faster

than we were 10 years ago, plus all of the crazy hardware

improvements, processing improvements on top of that, I

mean, you're solving problems like thousands times faster

than you used to be. So stuff that would take, "Oh, this

would take a day to solve or to take a week," is solving in

minutes and seconds now.

 00:52:06 So that's part of what we want to get out there into the

world as part of our message is, "Hey, CPUs, processors

are awesome and they're getting better." We got really

smart people and we bring more on. Year after year, we're

expanding our teams and bringing in the best of the best.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
25

Our algorithms are getting better. Because of that,

problems that you would just not even think about

solving five years ago are solvable in minutes now. And

that is a key thing that was a common misconception of

mathematical optimization, is, well, it's too complex of a

problem to solve. The computational stuff, don't even

worry about it. And we're like, "Hey, at some point, yes,

you can make problems infinitely large, and yeah, it's not

going to solve, but you can still get real business results,

solve real problems at the scale that you want and it's

doable." So that's part of my spiel, part of my getting on

my soapbox, is that.

Jon Krohn: 00:53:13 Well, what's really interesting about this whole

conversation that you just had is that I was only vaguely

aware that NVIDIA was working on CPUs at all. Now that

you say that, it's something that there's some cobwebby

memories out there, but this is the first time. So the blog

post that you provided authored by Greg Glockner, whom

you mentioned earlier from Gurobi, that VP and Technical

fellow at Gurobi, I will be including in the show notes a

link to this blog post, which is super interesting because

it's going into so much detail on NVIDIA's CPU's. And it's

got it right in here, as you mentioned, compared to the

AMD chip that I guess you would typically be using, it's

23% faster and uses 46% less energy. So effectively half

the amount of energy, which when you think about the

scale that these things can be implemented on, even just

work that Gurobi is doing where it's greater than 1,000

clients, something like 1,200 clients that you guys have

around the world. And so that cost savings is gigantic,

and energy savings is gigantic.

Jerry Yurchisin: 00:54:22 Yeah, exactly. And as a company who preaches like, "Hey,

you want to reduce costs, use the mathematical

optimization." If you want to reduce costs, then there are

things out there that can help run our product and other

similar things faster and more efficiently.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
26

Jon Krohn: 00:54:43 And just reading some more details about this Grace CPU

from NVIDIA, it has 72 cores and 480 gigs of high

performance low power memory. So that's wild. I mean,

it's taking the same philosophy I suppose that NVIDIA

has had historically with parallelization, lots of memory,

high speed memory transfer. So that expertise that they

have around developing the world's by far most popular

GPU's, AI inference accelerators, taking that same

expertise and now applying it to CPUs, making chips that

have tons of cores and tons of memory. Cool. Great story

there. In addition to new hardware options, like being

able to use those kinds of CPUs, you mentioned things

like an ADX speed up for the Gurobi software. Just the

way that the Gurobi optimizer is implemented, you get

ADX speed up hardware. Hadn't changed over the last 10

years, you'd still enjoy that ADX speed up because of

more clever work on the software side of the optimizer. So

can you tell us more about new optimizer versions that

you have and maybe go into more detail on how the main

algorithms work?

Jerry Yurchisin: 00:56:02 Yeah. So what we've at Gurobi have been diving into a lot

over the last couple years is if you look at what MIP

stands for at MIP, that's Mixed Integer Programming, but

there's an implicit L there, and the L is for Linear, Mixed

Integer Linear Programming. So everything needs to be

linear or it should be linear. It's very helpful if it's linear.

So your constraints need to be linear functions. Your

objective needs to be a linear function for that.

Jon Krohn: 00:56:34 This reminds me, I think a year ago in that episode, in

episode number 723 that you were on, this reminds me of

MILP, Models I'd Like to Program.

Jerry Yurchisin: 00:56:45 Yeah. I remember saying I need to use that and I think I

used it for a little bit and then I forget, but I'll bring it

back for sure. So a lot of this stuff is really helpful to be

everything linear fashion, and the complexity would be in

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
27

the integer variables, the binary, stuff like that. That's

where things got complex and things. Now we're diving

into quadratic things. So your objective is a quadratic

function, your constraints are quadratic. And that was

the big thing from I think a couple versions ago for us,

was it was really doing well in that. And those types of

applications are very important in chemical engineering

and things like that.

Jon Krohn: 00:57:38 And so in case people aren't aware off the bat, if you can't

quickly visualize what that means, quadratic, it means

that as opposed to a linear relationship, so with a linear

relationship as X goes up, Y say always goes up, or as X

goes up, Y always goes down. So you have that linear

relationship between X and Y. With a quadratic

relationship as X goes up, there might be a period of time

where Y goes up and then it starts to go down or the

other way around, it begins by going down and then

starts to go up. So you have a curve that can be modeled

quadratically with a squared variable. So obviously

there's lots of real world scenarios where you need to be

able to model that in order to build a high quality model

of some real world process. So I think you were just

starting to mention that. Was it with chemical

applications?

Jerry Yurchisin: 00:58:31 Yeah, chemical engineering is one in which that's a go-to

way. And prior to that you would do a lot of what we call

linearization of things where you would estimate those

non-linear functions with piecewise linear approximation.

So instead of your nice parabola, you would have line,

line, line. That mimics it, and that is good for some

things, but also you lose precision. And the more precise

you would like to make that piecewise linear

representation, the more additional variables you're

adding to the optimization model, which makes it run not

quite as quickly. So there is a balance there, precision

versus runtime. But now with our last version 11.0 and

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
28

what we're getting into in 12, which is going to be coming

out in a few months, is just more general non-linear and

what we call non-convex optimization. The assumption of

convexity, which is if you think of a feasible region, it's

convex if there's no dents in it.

 00:59:42 Take any two points, draw a line between those two

points. If every line that you could draw between any two

points is completely in the set, then that's a convex set.

And if you don't have that, then some of the previous stuff

I've been talking about of mathematical optimization, it

just gets really difficult, somewhat falls apart. But we

understand that those problems are the ones that people

want to solve, so the non-convex stuff is something that

we've made a lot of strides on. And then just

incorporating more non-linear functions that you can use

and not piecewise approximating them. So not

approximating them with a bunch of straight lines that

mimic curves, but the actual curves themselves and

implementing algorithms that solve those, which I'm still

getting myself up to speed on what those are doing.

 01:00:31 But just being able to solve more realistic problems at the

speed that people need to solve them is what we're

looking into and what we're trying to improve on version

after version. So our bread and butter is that mixed

integer linear program, and we're still always having

improvements there, but we are also looking into these

non-linear, non-convex problems as well, which are

everywhere as well. So we are trying to become the solver

for everything. And I think one approach that we are

trying to take to that that's a little bit different than

maybe what some people would think would be our

competitors, is there are some other tools out there that

do a lot of local optimization for non-linear problems, and

they don't worry about things like the mixed integer

portion of your decisions. We are still very much what

Gurobi is about, is this global optimality.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
29

 01:01:38 We are provably giving you the best solution for your

problem. May take a little bit longer in some aspects, in

some problems, but we feel that that is something that is

super important. I think I gave an example last time of if

you're a major airline and you could reduce your fuel

costs by 1%, that's massive. If you're just any bigger

company and you could reduce costs by the tiniest bit,

that's really good. So having that global optimality, that's

something that is guaranteed with how we approach

optimization, is really important to us and that's what we

want to put into our products.

Jon Krohn: 01:02:20 Nice. So handling more variables like quadratic

relationships as inputs or outputs as well as being able to

always model globally across the whole decision space as

opposed to just locally, are key elements there for you. So

tell us a bit more about why integer variables are so

complex to model. So that isn't something that would

necessarily be intuitive to me.

Jerry Yurchisin: 01:02:49 You would think that if I have, I guess everyone in your

minds, let's do a mind exercise... have a two-dimensional

graph and just put some sort of polygon on there and

make it convex. I just gave you the idea of what convexity

is, so no dents in it. There's no dents. So just draw a

polygon in your head, and then within your head

highlight the integer dots. So where one and one cross,

where two and two cross, where one and two cross and

everything like that, you put a dot instead of just having a

shaded region. The shaded region is what we would call a

relaxation of an integer program. The dots are the actual

points that you want as your solution. So you might be

thinking, "Well, if I have less points, then it should be

easier to solve." And it's exactly the opposite.

 01:03:52 Essentially, the way that the main algorithm works for

solving linear programs, it's called the simplex method. If

you have this polygon in your head, what it does is it

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
30

actually, because of the math behind it, the optimal

solution must occur at a point in which two of the outside

lines meet. So essentially, a vertex of your polygon, that's

where the optimal solution must be. It can't be anywhere

else. Well, I'll take that back slightly. It can't be on the

inside. You can have multiple optimal solutions if you

have two points and then the line connecting them are all

going to be optimal with the same objective value. So you

have your choice in a sense, but it's going to typically be

one of those corner points of your polygon. So because of

that, because it's guaranteed that that optimal solution is

going to be on the outside there, all of those integer points

that you have on the inside are probably not going to be

right there.

 01:05:03 So unless you just happen to have that be the case, now

you need to take the main algorithm that searches the

outside of your polygon, searches it very smartly. Now

you have to do something else. And the way that that's

done for the mixed integer programming is it takes that

problem and it breaks it into the main algorithm that is

used for that is what we call branch and bound. But

there's another one I can talk about in a second. Branch

and bound, essentially what that does is let's say that you

have this polygon and your optimal solution is where X is

1.5. We know that we want an integer value for X, so let's

set up two sub problems. One where X is less than or

equal to one, and then one to where X is greater than or

equal to two. So you're splitting off of that, you're

branching off of that variable because we want X to be an

integer and it can't be 1.5.

 01:06:07 So let's say it's either going to be less than or equal to

one, greater than or equal to two, and then we solve more

linear programs with the simplex method. And you keep

doing that until you get to a criteria that says this is your

mathematically provable optimal solution. So essentially

that's part of why it's more complex to have that integer

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
31

stuff is because you need to run possibly exponentially

many linear programs. What I mean when I say linear

program, where you don't have this integrality restriction.

So you let loose the rules a bit, solve, and then you

implement more rules as you go. So that's the iterative

process that happens. So eventually you'll get to

something that says all of my decision variables I want to

be integer are integer. I have a couple other things that

happen about lower bounds and upper bounds are

meeting. And then because of all of that, boom, it's math

says that we're at an optimal solution.

Jon Krohn: 01:07:11 So I'm gathering here that the fundamental problem when

you want to have integers in your model is that you can't

do calculus jumping from point to point. Calculus only

works over a curve.

Jerry Yurchisin: 01:07:22 More or less, yeah.

Jon Krohn: 01:07:24 So I think that's fundamentally the idea here is that you

come up with ways of artificially constraining things so

that you can work over a curve. So by creating these

relaxing constraints, like you said, but doing that a whole

bunch of different ways, you're able to view a problem

from multiple different perspectives around a point and

say this individual point actually is the best from all the

possible points out there.

Jerry Yurchisin: 01:07:58 Yeah. And I said something like, "Then the math says

you're at an optimal solution." So it is worth maybe diving

a little bit into how that happens. So going back to a

linear program, so let's say all of your variables are

continuous, which makes it easier. So the polygon in your

head is all just shaded and don't worry about the

individual dots in between. So worrying about the corner

points and stuff like that, that's a linear program where

all your decision variables are continuous. For every

linear program, there is something that's called a dual

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
32

problem. So it's just another representation that's like a

mirror image I guess, in a sense. If you're maximizing

your regular problem, the dual is a minimization problem.

And the math behind it essentially says that you have

your regular problem and your dual problem. If the

objective function value at the optimal point for each of

those problems, one going up, one coming down, is the

exact same value. And that's proven with fancy math and

proofs and stuff like that. And to use the terminology, the

original problem is called primal, and your dual problem

is called the dual. So your primal problem for its optimal

solution has a particular objective value.

 01:09:45 The dual has the same objective value, but different

variables. I won't go into details of how they translate to

one another, but it's pretty easy to actually go between

one and the other. But essentially one's going up, one's

going down. When they meet, that point in which they

meet is your optimal solution. And so that's part of a little

bit the math behind it. How we can say "we guarantee" is

because people have proven with the fancy math that if

this happens, then that's how you know that a linear

program is giving you the optimal solution without having

to exhaustively search all points and exhaustively search

everything. And when I say stuff like the smart math, the

smart things that are happening, that's a little bit of a

glimpse into how that works.

Jon Krohn: 01:10:39 Nice. Very cool. I am always learning a ton from you,

Jerry. You're a great explainer of complex concepts and

you're great at creating visuals as well. It's interesting, as

we're recording, I'm not usually closing my eyes and

imagining polygons.

Jerry Yurchisin: 01:10:54 I thought you were taking a nap. I thought I was boring.

Jon Krohn: 01:11:00 So onto another tricky technical question for you that I'm

really curious about is NP hard problems. So

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
33

definitionally tricky. So tell us what NP hard problems are

for those of us who don't know what they are and why we

shouldn't just ignore them. And then critically, why NP

hard problems that people wouldn't have even tried five

years ago can now be solved in seconds with

mathematical optimization.

Jerry Yurchisin: 01:11:32 So my quick little rundown of computational complexity

is you may have heard something like, "Is P equal to NP?"

That type of argument. And so essentially what that's

talking about is the algorithms to solve problems. What is

their computational complexity? So if something is in

class P, that means that there is a polynomial time

algorithm that will give you the solution. And those are

nice, those are easy, that they run quickly and

everything's pretty good with. That's where you'd like to

be. Then NP is what we call non-deterministic polynomial,

and essentially there's no polynomial time algorithm

known to solve it, but if you're given a solution, you can

quickly verify that it's correct. So to actually solve the

problem, very difficult, but to verify can be easy. Then

after that is what we call NP complete, which is the most

difficult of the NP problems. So if you're able to come up

with a solution or an algorithm that solves one of these

quickly, then you can solve all the other ones in the whole

class very quickly. So it's like the domino that would

make life easy for everybody in the computational space,

but that's probably not going to happen. But then there's

NP hard, which is the same thing. But unlike the NP

complete, you don't necessarily be able to have to verify a

solution quickly. So it may be actually very difficult to

verify if you're asking it, "Is this solution the optimal

solution?" That may be hard to just find out on its own.

 01:13:29 So that's where actually mixed integer programming is, is

that NP hard. So you hear about this thing, "These

problems are so difficult to solve," and yes they are. But

the thought is, if it's in this category, don't even try to

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
34

solve it with an exact solution. Which is something that,

again, like I say, it's just what Gurobi provides and what

mixed integer programming, the solvers like us, what we

provide is that global exact solution. We need to use

heuristics. We need to use approximations. And so it's

just a scary word or a scary phrase or something and it

just turns people away from it and like, "I'm not even

going to try. I'm not even going to attempt." And I came

across this. I was doing a webinar and I was talking

about, we have essentially a Python package called

Gurobi Opti Mods, which is prepackaged optimization

problems where you just feed some data, it runs, you

don't have to worry about any modeling and it gives you

an optimal solution.

 01:14:38 So it's very cookie cutter problems. And one of those is

what we call a maximum weighted independent set. And I

won't worry about going into that. You can watch the

webinar on YouTube and find out for that yourself, but I

was looking at the documentation for a Python package

that claims to solve this problem, and there's a line in

there that just says, "The actual problem of this is known

to be NP hard," so you're just immediately better off using

approximations, using whatever, using some heuristic to

find the solution. It just immediately put its hands up.

And this was documentation saying that, and it was

documentation for the package itself. So I guess, sure, it's

not going to say use other stuff, but whatever.

 01:15:35 In that webinar, I just gave it a very small problem of

taking nodes in a network and finding a subset I think

that covers all the arcs. I'm blanking on it now, but again,

just watch the webinar. But it was trying to solve this

very simple version of it and it was just a 10 node

problem and it was giving wrong answers. Looking at the

graph, I could visually see that it was wrong and it was

giving suboptimal answers. How would you think about

how this would perform at any type of scale, 100s, 1,000s

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
35

of nodes. You're trying to do some social network analysis

and you're running this package and it just giving you

clearly suboptimal solutions. So there is this just NP hard

fatigue. And then that translates into mixed integer

programming of, "It's a very hard problem. Don't try

solving it with a solver like Gurobi because it's just so

complex, it's just never going to work."

 01:16:46 But that was the case like 5, 10 years ago. And again, all

the stuff that we were talking about before with our

algorithmic improvements, hardware improvements, it's

just the things that were that's just "not even worry about

it." Oh, we have a mixed integer programming problem

with 10,000 variables and people are scared of that and

thinking, "That's impossible to solve. You'd never solve

that in any type of time that would make sense." Those

are being solved in half a second, a second,

instantaneously nowadays. So it's just yes, that is true.

 01:17:20 If I kept the whole thing behind this computational

complexities, if you expand the set of inputs, you're

growing exponentially. Yes, eventually you can grow the

problem such that it'll take Gurobi forever to solve

something. That is true at a certain size. But again, now

we're getting to the point with all the hardware, the

software and everything where real problems are now

manageable, real problems are now solvable in real time

for some things. Sometimes, you may have to concede a

little bit of that realism to get a little bit of performance or

something like that, but that's trade-offs you make for

everything. You'd make that with machine learning

training. I want to be able to retrain models quickly, so

you'd make some sacrifices there, things of that nature.

So there's always that balance for everything, but with

mathematical optimization, yeah, there is that stigma and

part of our message is, "Hey, try us again, then you may

be pleasantly surprised." And what I will add to that is

there is a difference between, I may have talked about

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
36

this last time, between a commercial solver, yes, Gurobi

eventually you do have to pay and buy a license from us if

you want to use what we have at the right scale and

everything. Yep, that is true, but we have the best minds

in optimization building that for you. So yeah, they're not

doing it for free yet. I asked, they say no. But you can use

open-source solvers and I think that's a great way to try

and solve real problems at a smaller scale and get

yourself going and try and understand, "Hey, does this

have business value for me? Is this going to be helpful?"

 01:19:14 Yeah, you may have to condense things, but it's a good

way to learn, good way to get started. And then by the

time you would need something like Gurobi, your

problems probably have expanded to a point in which it is

worthwhile to save that, to have something that takes us

open-source solver maybe days or weeks to run. And

we've had that sort of happen where a now customer or

someone who's trying to evaluate us would say, "Yeah,

this with an open-source solver would literally take a

week to run. We just click go on it and just came back

when it's done a week later it would be there." Now it's

solving in 10 minutes, 20 minutes or something like that.

Something that used to take a day or it would take a day

with open-source, now takes 20 seconds, 10 seconds to

solve with a commercial solver like us.

 01:20:05 So part of that is yes, the problem itself is NP-hard. It's

very difficult. So if you were to attack it with something

that is an open-source solver, keep that in mind that

there are options past that. But I don't want to discourage

the use of open-source, because it is the perfect way, a

great way to really, if you want to learn, it's a great way to

use something that's free to understand the value to your

business. Right now something like Gurobi you can

download, if you PIP install Gurobi, you can use a 2000

by 2000 sort of trial license to get yourself understanding,

again, that type of... When I say 2000 by 2000, it sort just

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
37

comes out naturally to me, because I know exactly what

I'm talking. 2000 decision variables, 2000 constraints.

 01:21:05 So when you think about the number of burrito trucks

that you're putting out there and the number of

constraints that you're adding to that, yeah, it's a fairly

small problem, but it's really great way to help you learn

and understand and sort of just build a small scale thing

that says that that's somewhat representative of your

problem. And then if you need to expand, then hit us up

again and we'd be glad to give you free evaluations and

help you work through that as well. So there's a couple of

things there that I wanted to mention about if you try

optimization and it fails not to think about why it might

be failing and if you are using an open-source solver,

many of them are really good. Some of them could be

good for your problem and you may never need anything

like Gurobi, that's certainly possible. But once you get at

scale, there's a decent chance that you may need

something like us.

Jon Krohn: 01:21:59 Nicely said, and that all made perfect sense to me, the

open-source trade-offs versus using a commercial

solution like Gurobi, particularly when you get to at scale.

But the way that you got into this was we started by

talking about NP-hard problems.

Jerry Yurchisin: 01:22:13 I deviated.

Jon Krohn: 01:22:16 And so just I wanted to say that, because I don't think

you mentioned this, that the NP in NP-hard stands for

non-deterministic polynomial time problem. And it's kind

of another way of saying a very complex problem, because

there isn't a deterministic for sure. You're not going to be

able to follow the same path to get the exact same answer

every time. Polynomial meaning things like having

quadratic relationships, not just linear relationships in

there. And so I don't know if you happen to have off the

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
38

top of your head, Jerry, like real world NP-hard problems

that maybe a few years ago no one would've dared to try

to tackle, but now you can tackle potentially in seconds

with Gurobi.

Jerry Yurchisin: 01:23:02 It's a little bit difficult to say one type of problem, because

all of MIPS, Mixed Integer Layer Programs, they're all kind

of similar in a sense, whether using them in supply chain,

whether using them in finance, whether using it

scheduling, they all sort of translate to the same thing at

some point. You take your decision, you take the verbal

problem and you put in algebra. Once you get in that

algebraic form, they're very similar in what you would see

sort of written down pen and paper. So it's kind hard to

distinguish that. But at the same time, operations

research folks, they love to talk about sort of problem

archetypes. So very common things like the knapsack

problem is how much stuff can I fit in knapsack to

maximize its utility before I go on a hike? Something like

that.

 01:23:53 Another one is the traveling salesman problem, and this

is something that you see a lot of... You might see some

neural networks trying to tackle this problem. You might

see quantum optimization trying to tackle this problem

and obviously mathematical optimization, Gurobi trying

to tackle this problem. It's just a very common easy to

understand problem. And traveling salesman problem if

you're not familiar is you have a set of cities that you

want to visit, the salesman wants to go and sell stuff to

each of these cities. What is the shortest path I can cover

all of those and then get back to my starting place?

What's the shortest path that I can take? A common thing

is I want to travel to all 50 or say all 48 state capitals,

what's the shortest path that I can take? You don't want

to drive from New York to California to Florida back to

Washington. That's obviously not great.

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
39

 01:24:52 You want to find the shortest path to travel all those

things. So that may be sort of the problem that people go

to as like this is an NP-hard problem and it's sort like the

go-to, this one's very difficult, because it is difficult to

solve. But I think now this is where I might have to have

to come back and do some research and stuff like that,

but you can solve problems that the key metric I guess or

the key sort of quantifier of a traveling salesman problem

is the number of cities. And there would be, if you want to

do a 50 city problem even five years ago, 10 years ago,

that's something that would be like, "Oh man, that's kind

of difficult to solve." Now we're into thousands and stuff

like that where you can easily solve a traveling salesman

problem with that type of size relatively quickly or at least

quickly enough that makes sense for whatever real

application that you're trying to solve. So that's sort of the

go-to thing that people like to talk about.

Jon Krohn: 01:26:13 I see. My last topic area for you, you've been very

generous with your time today. We've gone well over the

recording slot that we'd agreed to. But one last topic area

I have for you is around the history of optimization. So it

relates to the same kind of thing. You just said that a few

years ago you might have stopped the number of cities

that you might've tried to fit into the traveling salesman

problem might have been 50 and now it's thousands. So

can you stretch back a bit further with the history of

optimization and tell us why it initially wasn't popular?

Maybe what some of the first use cases were and how

that brought us to where we are today?

Jerry Yurchisin: 01:26:52 There's sort of two big names and I have it in front of me

so I don't mispronounce it. Kantorovich in 1939 and then

George Dantzig in 1947, those were two of the people who

really brought linear programming as I was describing or

earlier brought that sort of to the forefront. But Dantzig

gets a little bit more of credit. He's sort of like the name,

because he was the person who invented the simplex

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
40

algorithm, what I was talking about before, going from

corner point to corner point in a polygon. But using that

algorithm to solve a linear program sort of brought the

linear program as an important planning and decision

making tool around that time. So one of the first

applications of that is if you ever go to an OR, Operations

Research site or something about mathematical

optimization and it's like here's our first example. It more

or less is going to be something called the diet problem.

And that was a very small problem that was developed for

I believe the US army to help.

 01:28:12 How can I feed troops? How can I feed a battalion or

something like that? How can I feed that group of

individuals making sure that they have the nutrition that

they need but at minimal cost? So that was one of the

original applications of linear programming way back

when. Things like and I talk about the integer

programming was developed more or less in the mid '50s

with Dantzig and other folks as well were adding to that.

So around that time was when a lot of the initial theory

was developed. The problem was once you tried to get

past that real simple problem, which was nine constraints

in 77 variables, so that's a very, very small problem,

exceptionally small.

 01:29:11 Once you get past that, the computational power just did

not exist. So fast-forward to maybe something like the

'70s was when we actually started to get a little bit more

of the information, a little bit more of the power to

actually solve some of these slightly larger problems that

were still relevant to businesses, still relevant, but we

actually be able to solve them in any type of speed that

would make sense. It's not taking days or weeks or years,

but something that you can actually use. And a lot of

these problems were for oil and gas companies, for

refineries was one of the original adopters of linear

programming and they were actually very much into

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
41

funding this type of research in order to push forward the

theory and the technology and everything like that.

 01:30:10 So essentially what the main bottleneck was, was

computational power, and that is something that is very,

mirrors a lot of why it took so long for deep learning to

also become the powerhouse that it is today is because

for deep learning, the data wasn't there that we needed to

exist to really use it, but the computational part wasn't

there as well. Enter GPUs and all of a sudden boom, this

whole new thing sort of just explodes. And that's sort of

what mathematical optimization kind of hasn't had just

yet.

 01:30:51 I mean, obviously I've been talking a lot about how the

CPU and performances and all that stuff has really

increased over the last 20, 30 years and stuff like that to

problems that actually that were never be able to be

solved, now they can be solved in minutes and seconds.

But there wasn't a new technology that came on the

scene to really spur it like GPU's did for deep learning. So

it sort of just got kind of lost in the shuffle a little bit. It

definitely found its niche. Niche is too narrow of a word I

guess, but it has its early adopters. So I mentioned

supply chain a lot. That's sort of one of the big ones that

became an early adopter to mathematical optimization

and showed a lot of business value there. But then once

you get into the '90s and things like that is where a lot of

people started putting effort into the algorithms and really

improving that as well.

 01:32:07 So there's some groundbreaking research that really sped

up that part of it and just going, adding to that time over

time over time. And then Gurobi came on the scene in

2008 from a company one of our competitors called

CPLEX, which is owned by IBM. They were a bunch of

people there, including all three of our founders were at

CPLEX and making awesome advancements in the LP

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
42

algorithm space. But then just decided like, "Hey, we're

getting a little bit slow. We want to take a different

approach." So that's where Gurobi came in. So our three

founders decided to start a new company where creating

the fastest, most powerful mathematical optimization

solver that we possibly can became the top priority.

 01:33:15 So yeah, there's a lot of early adopters from a theoretical

perspective saying, "This could be really cool." Just the

computation stuff wasn't there, it got there a little bit. Oh,

people are like, "This is kind of nice, but again, let's solve

more realistic problems." Again, sort of entered that same

bottleneck of computational inefficiency and now that

things have been steadily increasing from people making

the algorithms better, from people making the hardware

better, again now we're actually at a point where over the

last few years really seeing businesses solve awesome

problems that are at the scale that they need.

Jon Krohn: 01:33:56 Nice. Great recap there. It's awesome that you had

prepared notes so you could speak so specifically about

dates and people, significant events, fantastic. No doubt

there will be more mathematical optimization in the

future as more and more people learn about it through

things like this podcast and as the solvers become more

and more efficient. Amazing episode, Jerry. I learned so

much from you yet again. Do you have a book

recommendation for us again this time?

Jerry Yurchisin: 01:34:27 Sure. Last time I dropped some, hey, let's get into

optimization as one of the books I cheated and used too.

This one's going to be a little bit different. I am a child of

the '80s and '90s, so one of the big things that a lot of

people had in the '80s and '90s was some sort of Nintendo

system. So the book that I'm going to highlight now is

called, Ask Iwata. So Satoru Iwata was a legendary CEO

at Nintendo, was given a lot. He's sort of given a lot of

credit for just fostering a very creative environment that

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
43

allowed developers and people that work there to really

push the boundaries of imagination and things like that

in game development. So it sort of goes into his leadership

and management philosophy, so sort of emphasizing

things like empathy for your workers and customers and

really trying, really putting your heart and soul into what

you're trying to create. And things like innovation, risk

taking and how that's very important for companies to

thrive.

 01:35:54 It's just something that I found to be extremely interesting

and something that I sort of took to heart a little bit in

terms of risk-taking, particularly it's kind of just like

coming to a position like this at Gurobi was a little... I

could keep working in consultancy doing a lot of cool

projects and stuff like that, but being able to take a risk

and start really getting a message out to data scientists

and the AI community about optimization, I thought that

was a big risk. It could have gone nowhere and I could

have not be on podcasts like this talking to awesome

people like you and everything. Like that could have just

tanked and then I'd be back to where I was. I sort of took

that to heart. So I think that could be a great thing for

anyone else who's interested in the history of Nintendo

and things like that could be interested to dive into that

book.

Jon Krohn: 01:36:51 Great message there. And it's funny, I'm also a child of

the '80s and '90s. I remember one of my earliest

memories, I must have been four years old on a bus. I

remember I was leaving kindergarten to go home on a bus

and I was sitting next to some kid, I have no idea who he

was, but he talked about how soon there was going to be

a Super Nintendo and it blew my mind and that might

literally be my earliest memory [inaudible 01:37:20].

Jerry Yurchisin: 01:37:20 That's a good one, that's a good one to have. If you're

going to keep one, that is some of my first memories is I

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
44

have a older brother, if you have older brothers, they tend

to pick on you a little bit and beat you in things

mercilessly and getting beaten in video games is one of

my earliest memories. I don't know if he's going to ever

hear this or anything, but I'm significantly better than

him now for a long time. I have significantly outpaced

him. But no, it's all in good fun and those types of fun

playing games with people and stuff like that is something

I look very fondly back on and definitely miss those times

a little bit hanging out on the couch and playing games

together is one of my favorite past times.

Jon Krohn: 01:38:13 Yeah, I do miss when we were all kids and everyone just

had all this time and you could just phone a friend up

and hang out and you just knew that they were at home

just looking for something to do and you don't have that

as an adult. I guess we have retirement to look forward

to.

Jerry Yurchisin: 01:38:30 That is true.

Jon Krohn: 01:38:32 In the meantime, between listening to this episode and

retirement, Jerry, where should people be following you to

get your latest thoughts?

Jerry Yurchisin: 01:38:40 Sure. Probably LinkedIn is probably the best way. That's

where I'm most active, because a lot of the stuff that I put

out there is also through Gurobi as well, and you can stay

connected with all of the coolest advancements that I was

talking about with non-linear capabilities and all this

other stuff. You can definitely find out all of our awesome

events. If you want to go to Las Vegas, if you're looking for

a reason to go to Las Vegas, we are holding a summit in

mid-September. It's going to be great. I'm going to be

hosting a data science track so we can sit down together

and have fun with all these hands on stuff if you're

interested in that. And you'll be getting a lot of updates

through LinkedIn on that. I'm also active, somewhat

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
45

active on Threads, but by and large, LinkedIn's the way to

get to me or just email me. That's cool too or LinkedIn

message. I'm happy to chat with anyone who's interested.

Jon Krohn: 01:39:47 Nice. And yeah, I just checked out the Gurobi Summit

coming up September 19th and 20th at not just anywhere

in Las Vegas, but the Wynn Encore Resort, which is as far

as I'm aware, the premier spot. It's the only place I've

stayed in Vegas and it was a really cool, beautiful spot.

Jerry Yurchisin: 01:40:06 Awesome. Yeah, we're super excited about the whole

event and I was talking about NVIDIA, they're going to be

coming to speak there as well, so you can hear more

about the relationship between Gurobi, mathematical

optimization and the powerhouse known as NVIDIA.

Jon Krohn: 01:40:22 Nice. And actually registration is about a 10th of what it

usually would be. Registration is $200 to $300 depending

on when you sign up before or after September 3rd. But

typically I'd expect to be going to a conference in Vegas at

the Wynn Encore, it'd be about 10 x that. So yeah, it does

look like a great excuse and you wouldn't have to bug

anyone at your company for too much budget to head out

there and check it out. Very nice.

Jerry Yurchisin: 01:40:55 Cool.

Jon Krohn: 01:40:55 All right, thanks, Jerry. Thank you so much for taking all

the time with us today. It's been awesome. I have learned

a ton and yeah, can't wait until the next time.

Jerry Yurchisin: 01:41:03 Awesome. Sounds good, Jon. I really appreciate it and

yeah, looking forward to more conversations.

Jon Krohn: 01:41:14 What a brilliant, well-spoken guy. In today's episode,

Jerry filled us in on how mathematical optimization is

prescriptive, such as helping with business decisions

relative to ML and stats predictive nature. And he talked

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
46

about how mathematical optimization is the ideal tool for

the job whenever there are many real world constraints to

factor in and you'd like to maximize or minimize

something. Talked about how you can learn about

optimization hands on yourself using his Jupiter

notebooks and online courses. We've got links to all of

those in the show notes. He talked about how GPUs are

not ideal for optimization, but state-of-the-art CPU's, like

the 72 core NVIDIA GH200, allow optimization operations

to run 23% faster and use nearly half as much energy. He

talked about how the latest and greatest mathematical

optimizers can handle quadratic inputs and outputs and

how NP-hard problems like the traveling salesman

problem and the knapsack problem can now in some

cases be handled in seconds by mathematical optimizers

while just a few years ago we might not have even

attempted to tackle such complex problems.

 01:42:19 As always, you can get all the show notes including the

transcript for this episode, the video recording, any

materials measured on the show, the URLs for Jerry's

social media profiles, as well as my own at

superdatascience.com/813. Thanks of course to everyone

on the Super Data Science podcast team, our podcast

manager, Ivana Zibert, media editor Mario Pombo,

operations manager Natalie Ziajski, researcher Serg

Masis, writers Dr. Zara Karschay and Silvia Ogweng, and

founder Kirill Eremenko for producing another

outstanding episode for us today.

 01:42:48 We're enabling that super team to create this free podcast

for you. We are very grateful indeed to our sponsors. You

can support this show by checking out our sponsors links

which are in the show notes. And if you are interested in

sponsoring an episode, you can get the details on how by

making your way to jonkrohn.com/podcast. Otherwise,

please share, review, subscribe, all that good stuff. But

most importantly, just keep on tuning in. I'm so grateful

http://www.superdatascience.com/813

Show Notes: http://www.superdatascience.com/813
47

to have you listening and hope I can continue to make

episodes you love for years and years to come. Till next

time, keep on rocking it out there and I'm looking forward

to enjoying another round of the Super Data Science

podcast with you very soon.

http://www.superdatascience.com/813

