

Show Notes: http://www.superdatascience.com/815
1

SDS PODCAST

EPISODE 815:

POLARS: FASTER

DATAFRAME OPS,

WITH MARCO

GORELLI

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
2

Jon Krohn: 00:00:00 This is episode number 815 with Marco Gorelli, Senior

Software Engineer at Quansight Labs.

 00:00:05 Today's episode is brought to you by AWS Cloud

Computing Services, by Babbel, the science-backed

language learning platform, and by Gurobi the decision

intelligence leader.

 00:00:20 Welcome to the Super Data Science Podcast, the most

listened to podcast in the data science industry. Each

week, we bring you inspiring people and ideas to help you

build a successful career in data science. I'm your host,

Jon Krohn. Thanks for joining me today. And now, let's

make the complex simple.

 00:00:51 Welcome back to the Super Data Science Podcast. Today

we've got a deeply technical episode for you. I know many

of you love that. This one's with the tremendously

talented communicator of complex technical topics,

Marco Gorelli. Marco is a core developer of the popular

Python Libraries, Pandas and Polars, as well as being the

creator of the Narwhals Library. He's spoken at several

major Python conferences such as PyData. He's taught

Polars professionally and he wrote the first complete

Polars plugin tutorial. He currently works as a Senior

Software Engineer at Quansight Labs. Previously he

worked as a data scientist and was one of the prize

winners from amongst over a hundred thousand entrants

of the M6 forecasting competition. He holds a master's in

Mathematics and the Foundations of Computer Science

from the University of Oxford.

 00:01:36 Today's episode will appeal primarily to hands-on

technical folks like data scientists, ML engineers, and

software developers. In this episode, Marco details what

the hot, fast-growing Polars library for working with

dataframes in Python is. It already has 65 million

downloads and 28,000 GitHub stars. He also talks about

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
3

how Polars offers up to a 100x speed-ups relative to

Pandas on dataframe operations, how the lightweight

dependency-free Narwhals package he created allows for

easy compatibility between different dataframes libraries

such as Polars and Pandas, how he got addicted to open

source development and this simple trick he used to be a

prize winner in super popular forecasting competitions.

All right, you ready for this dazzling episode? Let's go.

 00:02:24 Marco, welcome to the Super Data Science Podcast. It's

awesome to have you here. We're in London, it's

sweltering hot. We took the train in from Cardiff to be

here. Welcome to the show. I really appreciate you

making that trip. So you were introduced to me by

Reshma Shaikh, who has recommended many wonderful

guests on the show. I said that I was going to be in

London and who should I speak to? She wrote back right

away and said, "Marco is who you should talk to." And I

reviewed your work. I reviewed some of the talks you've

done in the past and I couldn't be more excited to be here

interviewing you with an episode, particularly focused on

Polars, which I've been excited to learn about for a long

time.

 00:03:04 There also is, there's an interesting connection here. In

episode number 765, we had your CEO Travis Oliphant,

so we'll talk about your company Quansight later on in

the episode, and he's a huge player. He was the originator

behind NumPy, behind SciPy, and so maybe someday

some of the packages of yours that we'll be talking about

today, like Narwhals will also be as invaluable to data

scientists. Anyway, that was a long intro welcoming you

here. Welcome to the show, Marco.

Marco Gorelli: 00:03:37 Thank you for having me.

Jon Krohn: 00:03:39 Nice. Yes. So Polars, you've been deeply involved in the

development and maintenance of popular open source

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
4

dataframe manipulation library. So, Pandas is probably

the one that are listeners are most familiar with. I think

probably anyone who's a hands-on data science

practitioner is used to manipulating dataframes in the

Pandas library in Python. But Polars is increasingly

popular and it's developed by Quansight Labs. Actually, I

guess a lot of support for Polars comes from Quansight

Labs.

Marco Gorelli: 00:04:18 I think I'm the only person in Quansight Labs who's

contributing to Polars. Polars came out of Ritchie Vink,

he's a developer in the Netherlands. It was originally his

lockdown project in 2020 and then last year he started a

company around it, imaginatively called Polars.

Jon Krohn: 00:04:39 Yes, and I guess the idea of the name Polars is that it

comes from a panda bear and a polar bear. That must be

it, right?

Marco Gorelli: 00:04:47 That's part of it. The other part is that it ends with R-S.

Polars is written in Rust and the file extension for Rust

files is typically dot R-S.

Jon Krohn: 00:04:58 Let's actually, because I know Rust is going to be

important to this conversation, so tell us a bit about the

Rust programming language and why somebody should

maybe consider using that programming language over

other languages.

Marco Gorelli: 00:05:10 All right, yeah, that's a fun one. I started learning Rust,

not because I particularly wanted to learn Rust, but

because I wanted to contribute to Polars. Just tried using

Polars one Saturday afternoon while procrastinating on

some life admin. Found a little bug, thought it might be

fun to fix it, and got a bit addicted to the process. What

people usually highlight about Rust that's nice is memory

safety. So Rust has some built-in mechanisms which

make it quite difficult for you to make certain kinds of

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
5

mistakes, which are a lot easier to make in certain other

kinds of programming languages. It's also got quite a

readable syntax and nowadays Rust, it's been around for

I think at least 10 years, so IDE support is really nice.

You get lots of really nice support if you are writing Rust

in VS Code, and I think that's why it consistently ranks

as one of the most admired languages in the Stack

Overflow developer surveys.

Jon Krohn: 00:06:13 It does, it does. That I've seen for sure. And so what is it

that makes it easier to program in Rust. I've read, I've

never looked at a line of Rust code myself, but I've heard

that there's things related to it compiles very easily.

You're very unlikely to run into programming errors that

you put in.

Marco Gorelli: 00:06:33 Well, it compiles slowly. I don't know about easily. In fact,

most people when they try writing Rust, they experience

fighting the borrower checker. There's Rust, which

enforces certain constraints, which make it hard to run

into certain kinds of bugs as you've said. But also it can

be a bit annoying, especially at first when you can't

understand necessarily why the compiler is rejecting code

which to you looks perfectly safe, but it's doing you to

save you, and you really appreciate that later. Once you

get it working, you're a lot more confident in what you've

written.

Jon Krohn: 00:07:11 So it's actually the opposite. It isn't that Rust compiles

easily, it's that Rust compiles with quite a bit of

complaining. That makes it such a desired language. So it

does the complaining for you instead of I guess your

downstream users or clients.

Marco Gorelli: 00:07:26 I'd say it's if you're in it for the long run, it's a good

choice. If you just need to do some quick

experimentation, some quick EDA, maybe not. I think

that leads to one of the design decisions behind Polars. So

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
6

Polars is written in Rust, but it's got a Python API. The

idea is that most data scientists should interact with

Polars directly through the Python API. That's something

they're probably familiar with that can fit in with the rest

of the tool chain, but development of the library itself

happens in Rust.

Jon Krohn: 00:08:02 Very cool. So yeah, so back to Polars more specifically. So

now we know it's Rust background. We know that even

the RS suffix on it is related to the Rust filenames, so

that's clever. We know that you develop in Rust in order

to be developing the Polars library. For somebody who is a

data scientist who isn't necessarily a software developer

like you are, but for somebody who wants to be taking

advantage of Polars, why should somebody install Polars

into their Python instance instead of Pandas?

Marco Gorelli: 00:08:40 I hate to give the boring answer of, it depends, but that's

often the answer to lots of technology questions. So my

general advice is if it's not broken, don't fix it. If you've got

an existing Pandas project that works absolutely fine for

you, then I think there's probably better things for you to

focus on than rewriting it in Polars. But if you're starting

a new data science project, then that's when I typically

recommend people, "Okay, this is a good time to give

Polars a go."

 00:09:08 I think if you start a new project and you try to think in

Polars right from the start, you'll end up writing idiomatic

code and you'll have a lot of fun. Something a lot of Polars

users say is that it's surprisingly pleasant to write Polars

code and it's nice to see what the library does for you. The

syntax is very nice. I think that's one of the major APIs,

major innovations that the library has brought aside from

just a phenomenally good implementation.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
7

Jon Krohn: 00:09:38 I would've maybe assumed that the API, that the syntax

would be similar to Pandas, but actually what you're

saying is it's quite different.

Marco Gorelli: 00:09:48 That's right. Yeah. So the idea of trying to reimplement

the Pandas API but with a different faster backend and all

of that, it's been tried with varying degrees of success

with Polars. I think this is a really nice success story.

Ritchie just had the courage to try something different to

say, "Well Pandas, it's successful, it's popular, it does

what it does. Let's try doing something different. Let's try

not having row labels. Let's just not have an index."

 00:10:19 I think any of your listeners who are familiar with

Pandas, most of them are probably used to having to do

reset index every two or three lines of Pandas code in

order to get things to work. There are Pandas users who

use the index very intentionally and they can make great

use of it. You can get performance improvements from

using the index very intentionally, but I think the

majority of Pandas users, for them, it's probably more of

an annoyance than anything else. And so I think Polars

has really made a good design decision here. Most users

don't need to worry about their rows having labels. A side

effect of this is that it makes certain performance

optimizations easier and the company is now working on

distributing Polars.

Jon Krohn: 00:11:11 The company, Quansight?

Marco Gorelli: 00:11:13 Sorry. The Polars company.

Jon Krohn: 00:11:14 The Polars company?

Marco Gorelli: 00:11:15 Yeah, exactly. So when it comes to distributing Polars,

then it should be easier to do that if you don't have to

worry about having an index. Whereas companies that

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
8

have tried distributing Pandas, like Dask, they do have an

index, but it does cause some difficulties.

Jon Krohn: 00:11:33 I see, I see. So there is a Polars company that is

commercializing the Polars open source library that

anybody can access and install?

Marco Gorelli: 00:11:42 Yeah, that's right. So there's a company that's behind the

open source software. Most of the core developers are

hired by the company. The open-source software Polars is

and always will be open source according to Ritchie.

However, they're also going to make some other offerings,

like a cloud offering, distributed. These are things that

are going to be paid services and that's what the company

is working on.

Jon Krohn: 00:12:15 Makes perfect sense. Hopefully this isn't a controversial

question, but Quansight Labs knows that you spend a

fair bit of your time on Polars project and we have some

more questions for you later in the episode on how

Quansight supports their employees splitting time

between consulting and open source development. Do you

know why that works so well? Do you know why you get

so much support on developing Polars?

Marco Gorelli: 00:12:42 Well, I've brought into the company some clients who

have wanted training in Polars, both for teaching their

employees how to use Polars and teaching their

employees some more advanced tricks like how to extend

Polars with Rust plugins. We've also had some clients

who've specifically wanted help with solutions that have

heavily leveraged Polars. So for the company it works well

to say that they've got somebody who's invested in

contributing to Polars who can help clients, and it works

for me if I can do a bit of both. Really happy to have this

balance at the moment.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
9

Jon Krohn: 00:13:23 Are you stuck between optimizing latency and lowering

your inference costs as you build your generative AI

applications? Find out why more ML developers are

moving toward AWS Trainium and Inferentia to build and

serve their large language models. You can save up to

50% on training costs with AWS Trainium chips and up

to 40% on inference costs with AWS Inferentia chips.

Trainium and Inferentia will help you achieve higher

performance, lower costs, and be more sustainable.

Check out the links in the show notes to learn more. All

right, now back to our show.

 00:14:00 Awesome. Another aspect of Polars that I understand, so

you've mostly so far been talking about Polars being a

great choice for people who want to be manipulating

dataframes and have more fun, have an easier time with

the syntax relative to what they might impede on. But

you've previously, on another interview, you described

Polars expressions as functions that only take effect once

you put them inside the dataframe context. Can you

provide an example of how this lazy evaluation benefits

data processing and any maybe concerns people should

be concerned about as users when they do evaluate in

this way?

Marco Gorelli: 00:14:37 Oh, that's fantastic. Yeah. Expression is really one of

Polars innovations. I don't think it's something that

Polars invented. PySpark had something similar, some,

our libraries I think had something similar, but the way

they work in Polars, I think of an expression as a function

from a dataframe to a sequence of series. Most users

don't think of it in these terms. Most users just think of it

as grabbing a column from a dataframe and then doing

some operation on it. People usually get an intuition for

what expressions do fairly quickly in terms of what

advantages, apart from just how nice the syntax is to

manipulate. The fact that an expression is just a function,

so it doesn't need to be evaluated right away.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
10

 00:15:31 It means that when you've got the dataframe context,

Polars can analyze the different expressions which you've

passed in and they can apply certain optimizations. For

example, the classic example that Ritchie gives is if you

are taking a column and doing a sort and then selecting

the first five elements, then this has got N log N

complexity, but you could just do a top K algorithm, and

then the complexity there should be linear, I think

something like that.

 00:16:03 Another example is you might be doing feature

engineering, you might be making two features which

both start with something very similar. I don't know, take

the absolute value of the logarithm of something and then

one feature you're doing like shift one in the other feature

you're doing shift two. People are often making features

where part of the calculation is very similar. So then

Polars can do common subplan elimination. It can see

that some parts of the expressions are very similar. It can

just assign that to a temporary variable, just calculate

that once and then reuse that between the different

features.

 00:16:43 Another advantage of using expressions in DataFrames is

that it lends itself very nicely to parallelization. So if

you're just making a single operation on a single column,

then it's often just not worth it to set up the overhead of

doing multi-threading. But if you're calculating, let's say

five different features which are independent of each

other, then it's quite natural to say, "Okay, we'll do these

five in parallel." People can often get 10, 20, a 100x

improvements by writing things in Polars compared to

what they might've got with some other frameworks.

Jon Krohn: 00:17:27 Wow. That 10, 50, a 100x, that includes the

parallelization?

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
11

Marco Gorelli: 00:17:33 Including everything. Including parallelization, including

query optimization that we get from doing things lazily,

just the whole package. It's going to give you quite a

significant advantage both in terms of runtime and in

terms of memory.

Jon Krohn: 00:17:50 Nice. And let me try to break down that lazy term a bit for

listeners who might not know it and maybe in the context

of what you just said. So if the code that I was working

with was working in an unlazy way, which could be a

Pandas dataframe, and if I have a Pandas dataframe with

only a hundred rows or a thousand rows and I want to do

a sort like you described before, I take the top five after a

sort. With only a hundred rows or a thousand rows in my

dataframe, in real time I'm not going to notice any

problems with that kind of evaluation. But if I have a

million rows or a billion rows, then that Pandas

dataframe, I'm going to be just sitting there for who

knows how long while I'm waiting for that sort to actively

execute. But with this kind of lazy evaluation that is

supported by Polars behind the scenes, so it doesn't

actually execute the code until I ask for some kind of

output.

 00:19:00 And when I ask for that output, there's lots of

performance optimizations behind the scenes like you

described in much better detail than I could. But the net

effect is that it means that if I need that sort on a huge

dataframe to happen because it's not actively executed in

a more simple-minded way. It's lazily executed in a more

clever way, and so lazy meaning that it doesn't execute

until it has to. Because of that lazy doesn't execute until

it has to, performance optimized behind the scene

execution, you get these huge speedups like you

described with the sort scenario. To use computer science

terminology, it was a linear increase in compute as your

dataframe gets larger as opposed to N log N, which is

much more, much more, much more computationally

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
12

expensive when things get larger. Did I do an all right job

of trying to recap what you said there?

Marco Gorelli: 00:20:01 Yeah, totally. I think you got the spirit of it perfectly.

Jon Krohn: 00:20:05 Nice. All right, so another aspect of Polars that allows it to

differ from other libraries is that it optimizes string

operations and data processing in particular. Do you

want to talk about that?

Marco Gorelli: 00:20:20 Sure. Right. We need to make a little Pandas and NumPy

comparison here. So we need to go back in history a bit.

Pandas originally built on top of NumPy. NumPy has not

traditionally had a string data type. They do since NumPy

version two, but traditionally if you wanted to store

strings and maybe they're of different lengths and all of

that, you're going to have to just use an object data type

in NumPy. So in object data type, every element is just a

pointer to a string and that comes with all kinds of

performance and memory footguns. So that's the

historical part then.

 00:21:12 In Pandas, this has traditionally been a bit of a weak

point. I think since Pandas 1.5, it's been possible to

leverage PyArrow to use a specialized string storage. So

how that works is there's a really long string behind the

scenes and for each string in your series, Pandas is

recording where the string for that particular row starts

and where it ends and like this, it ends up with better

performance and memory characteristics compared to

just using the classic object data type NumPy ones.

Polars have taken it even further and they've got a whole

different kind of string. They've written a whole blog post

about this and that enables further optimizations,

especially if you've got repeated strings. So that's the deal.

Polars makes working with strings really nice. It also just

does this natively. You don't need PyArrow installed in

order to make use of Polars strings.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
13

Jon Krohn: 00:22:29 And I guess this is of increasing and increasing

importance with how natural language processing is

becoming more and more and more of data science. So

there was a time when Travis Oliphant, who we talked

about at the outset of the episode, when he would've

created NumPy and SyPy, almost everyone who was using

Python, I don't have the stats on this, but just based on

my experience and seeing what was happening out there,

most of the time you're working with tabular data. And

those tabular data, by and large, they were numeric. I

mean for sure with NumPy, and Pandas was designed to

go a bit beyond that and be able to handle lots of different

data types in one matrix structure where you have one

column that strings, one column that's numbers and so

on.

 00:23:14 So more like working with the kind of data that are in a

spreadsheet that you might have in Excel. But we are

now in this era of data science where natural language

processing capabilities are so profound thanks to things

like large language models, transformers, generative AI,

we have so much more interest in natural language

processing than ever before. And so it seems to me like

having these string optimizations will come in handy.

Marco Gorelli: 00:23:46 Yeah, definitely. I mean, even if you're not working in

NLP, if you're working in traditional data science, you're

probably working with some columns which are strings,

like maybe you've got a column which tells you the name

of your vendor or the name of your supplier and all of

that. You can see the difference that this makes with the

TPC-H queries. So this is a set of popular database

benchmarks. It's originally written for SQL engines, but

it's been adapted to dataframes and you can see the

difference of running those in Pandas, just a classic data

types. And then in Pandas where the only difference you

make is to use PyArrow strings instead of the classic

object data type. And typically most queries get about

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
14

twice as fast, even though in those queries you're not

doing anything string-specific. Just doing a join that

includes string columns, even if you're just comparing

two columns for equality, any operation where strings are

there in the middle, it benefits from this.

Jon Krohn: 00:24:47 Very cool. So again, you talked about how you can get big

performance improvements. You talked about 2x just

now, even in situations where there aren't string

operations. You talked not long ago in the episode about a

10x, 50x, or even a 100x speed up in some situations

thanks to the lazy execution, other optimizations that

exist in folders. Do you happen to have any kind of

specific case studies that come to mind for you where

these biggest really big performance changes happened?

So where you're working with large data sets and you

leverage Polars and Rust to get a huge performance

improvement relative to if somebody was using say

Pandas and NumPy.

Marco Gorelli: 00:25:34 You're in luck. I do.

Jon Krohn: 00:25:38 I didn't prepare him for these questions, so that sounded

like it was almost like cheesy and teed up.

Marco Gorelli: 00:25:45 No, yeah, I got a case study that's really in my mind for

this. Was recently working with a client who had lots of

data that they wanted to geocode. Maybe we should

explain to the listeners the meaning of geocoding reverse

geocoding. So geocoding is the practice of when you're

given an address, you need to determine what's the

latitude and longitude of it. And then reverse geocoding,

that's the opposite. You're given some latitude and

longitude and you want to work backwards and get

what's the closest address. So this is something that's

used in a variety of sectors from trying to identify

landmarks to advertisements. Lots of industries are

interested in doing these kinds of operations and typically

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
15

the way you do it is with really big data sets. You've got

big lookup data sets with lots of addresses, you're trying

to match things. And how can you do this quickly?

 00:26:40 In particular, this client was quite interested in doing this

in a way that could save them money and they were really

interested in seeing how far can we get, let's say on a

single node or even on AWS Lambda, and we found that

actually we could do the entire thing on AWS Lambda.

AWS Lambda is a very constrained computing

environment. There you've got maximum 15 minutes to

complete a job. You've got maximum 250 megabytes for

your package size. So that means that installing, let's say

the newest versions of Pandas, PyArrow and NumPy all

together, it just wouldn't fit.

 00:27:19 However we found, well Polars is fairly lightweight. We

didn't need PyArrow, Pandas or NumPy for this task. We

can make it work. So on the packaging side, we also

needed some Rust extensions and I think that's not super

easy to get into AWS Lambda, but here this allows me to

talk about one of Polars superpowers and that is that you

can extend it. You can make Polars plugins, you can write

your own Rust extensions for Polars, which you can then

distribute onto PyPI and people can just PIP install them

as they would any other Python package, and then it just

fits in naturally with the rest of your Polars workflow as if

it was part of Polars itself. So for this client, we wrote one

new Polars plugin for this task. We leveraged a couple of

Polars plugins, which the community had already built,

which happened to perfectly suit our use case.

 00:28:17 And this Polars, I think we were using three Polars

plugins, then Boto3, S3FS, some other packages which

are just used in AWS for cloud computing and we could

fit all of this easily within the limit. Now comes the data

constraints because there in AWS Lambda, I think you've

got a limit of 10 gigabytes of RAM, but we needed to query

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
16

hundreds of gigabytes of data. This is where lazy

execution really helps, in particular lazy execution with

Polars plugins. So we could say scan all of this data and

then use the plugins to determine which rows need

reading and only read those so then Polars knows which

parts of the data set of all of these hundreds of gigabytes

it needs to read based on Rust extensions, which really

customized things which would written and in the end it

could all fit within the memory and time constraints. I

think this could be possible using other technologies, but

I am pretty confident that it would not have been so easy.

Polars really made it easy for us.

Jon Krohn: 00:29:31 If you're a regular listener, you know that last year I did a

European podcast tour interviewing incredible guests in

Amsterdam, Paris and Berlin. While all the guests spoke

perfect English, Babbel was invaluable for me to learn

and practice Dutch, French and German enabling me to

get directions and order my meals in the local language.

Super fun, rewarding and in some cases an essential

skill. Now you can do the same with a special limited time

deal. Right now get up to 60% off your Babbel

subscription, but only for our listeners at babbel.com

slash superdata. Get up to 60% off at babbel.com slash

super data spelled B-A-B-B-E-L dot com slash superdata.

Rules and restrictions may apply.

 00:30:18 That's a very cool case study. To summarize back some of

the key points from that, you talked about, you had

mentioned actually already earlier in the episode how one

of the advantages of Polars is that it can be extended with

Rust, but now we got a sense of what that really means.

And so these Rust extensions become add-ons that you

can very easily install just for the PyPI call, just like if you

were bringing in Pandas or Polars. And so, very, very easy

to do that. And those Rust add-ons, they can be

customized for tasks like going over hundreds of

gigabytes of data, identifying relevant rows and then

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
17

allowing you therefore to have even running in that highly

constrained AWS Lambda environments, which is a small

amount of code you're able to execute highly efficiently.

It's a really cool case study. Did I get that right?

Marco Gorelli: 00:31:15 Yeah, yeah, absolutely. I like the summarizing. Listen to

the last episode on Super Communicators for more on

that.

Jon Krohn: 00:31:21 It's true. Yeah, the preceding episode before I was

recording with Marco today was episode number 805 with

Charles Duhigg. Charles Duhigg is a Pulitzer prize

winning journalist. He's a many bestselling authors, a

many time bestselling author. He's not multiple authors,

not that I'm aware of. I don't think he has a secret

pseudonym. But his most recent book is called Super

Communicators and we talked about it a fair bit in that

episode 805. And it's interesting, because I don't usually

have mainstream authors on the show. We have

sometimes data storytelling experts like Cole Nussbaumer

Knaflic, but those are people who even though her data

storytelling book was a huge bestseller, she comes from a

technical data science background. Charles wasn't like

that, but he was just such a big mainstream author that

when he approached me on the show I was like, "Sure,

let's do it." Because who can't benefit from knowing more

about communication?

Marco Gorelli: 00:32:26 Yeah, exactly. It was a great episode. I'm sure lots of

people enjoyed it. On the Rust extensions though,

something I'd like to clarify is that it's not as scary as it

sounds. I'm sure if we could see people's faces from the

audience, we'd be seeing some blank stares. When I've

talked about Polars plugins at conferences, that's often

what happens. People think, "Who is this guy and why is

he expecting us to write a Rust extensions?"

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
18

 00:32:51 And my claim is it's not that difficult to make a Polars

plugin. Polars has some really complicated Rust code

inside it. But the Polars plugins mechanism is that

complexity is abstracted away enough that if you can

express your business logic in Python, it's not that much

of a stretch if you just know the basics of Rust to

translate that into a Polars plugin. I've got a Polars

plugins tutorial online. If you just search a Marco Gorelli

Polars plugins, I'd like to think you can find it. Freely

available resource and it can teach you how you coming

from a Python background can learn just enough Rust to

write your Polars plugins. It covers how to distribute

them, different data types, some performance tips.

Jon Krohn: 00:33:47 I'm sure we'll include that in the show notes. I don't talk

about her enough on air, but she also deserves praise. I

frequently actually come on and talk about our

researcher Serg Masis who, like you are already

experiencing, Marco, today, has done incredible research

digging out lots of great topic areas and specific technical

questions, which is super helpful. But someone else that

is invaluable on the show is our podcast manager Ivana,

who goes through and anytime we mention things like

this, the guest mentioned some blog post of theirs or

some tutorial like you just mentioned that they can

download and she goes and makes sure that it's there for

you in the show notes, keeping everything organized and

on time. And that's how we get 104 episodes a year all

released on time for many, many years in a row thanks to

her. So anyway.

Marco Gorelli: 00:34:33 Nice one, Ivana.

Jon Krohn: 00:34:34 Yeah, exactly. So back to the amazing Serg topic flow and

the kinds of questions that he has covered. You

mentioned geocoding in your last example, and we didn't

actually even really get back to how that was... After

you've kind of gone through the performance

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
19

optimizations, what was the net effect for the geocoding?

Maybe we should draw a line under that quickly.

Marco Gorelli: 00:34:58 Yeah, sure. The net effect was that the client was able to

go from having to make expensive API calls from having to

run something on a cluster with multiple nodes to just

being able to run something in the most constrained

possible computing environment. So for them it was a

saving in terms of time, in terms of compute resources, in

terms of maintainability. They were really happy with the

solution.

Jon Krohn: 00:35:24 Very cool. And so when I think about geocoding, it seems

vaguely related. You maybe like me travel around the

world a lot. This idea of moving around, something that

moves around as we move around is the time zones.

That's a huge pain not only for our body clocks, but also

for anybody who's developing software and having to

manage over many time zones. So you've cautioned

previously against manually managing time zones. So you

did this in a conference talk. Could you elaborate on the

challenges that you faced when trying to manually handle

time zones and why software like Polars is a more reliable

solution?

Marco Gorelli: 00:36:10 Sure. I remember seeing a colleague trying to manually

put in a if-then statement to deal with daylight savings

time. Yeah, that's a bad idea. Chances are you won't be

able to get it right. You won't get the direction. If you then

need to communicate with people in different countries,

like in the US they observe daylight savings time at a

different time than we do with the UK.

Jon Krohn: 00:36:34 I think Arizona doesn't observe daylight savings time at

all.

Marco Gorelli: 00:36:37 Oh, right. Yeah. Lots of countries don't observe it at all. I

think in Morocco they do, but they go in the opposite

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
20

direction. Time zones are a mess. And then you find that

countries have changed time zone offsets. Maybe, like in

the UK we are a plus zero most of the year, sometimes

plus one. Some countries at some point in time they

decided, "Yeah, we're going to go from minus 13 to plus

11, that's it." And you might think that it's manageable to

do this by hand, but it's really not. You want to leverage a

third-party library to do this. So Polars has full support

for time zones in the sense that any operation which is

time aware you can do it, respecting time zones. My

advice with time zones is you should avoid them if you

can. They're an absolute mess and they also come with a

bit of a performance hit. It's just a necessity.

 00:37:34 Unfortunately, you can't necessarily avoid time zones. If

your boss is asking you for a daily sales or something and

your company is selling at every hour of the day, then you

better do it in a time zone-aware manner. If you take the

trick which some people suggest of convert to UTC, do

your analysis and then convert back, then you're going to

miss subtleties due to daylight savings time and other

things. So just convert to UTC and back might be a

solution in some cases, but definitely not in all cases,

which is why it's important for software like Polars to

have good support for time zones. Personally, one benefit

that I got from getting involved in time zones is that it led

me to get involved in Polars. So side note, open source tip.

Sometimes people ask, "How do you get involved in open

source? How do you start contributing to something like

Polars that looks so complicated?"

 00:38:29 And my advice is if you've got some topic that's valuable

and that's interesting to you but is boring to other people,

then that's your competitive advantage. When I started

contributing to Polars, I noticed that a lot of the time zone

stuff just hadn't been done. The other maintainers just

didn't find it very interesting or found it frustrating and

all of that. And I was like, "Okay, well I don't know Rust,

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
21

maybe this can be a bit of a win-win situation. I'll help

you with your time zones, you help me with my Rust."

And yeah, it worked. Just started fixing stuff up, learned

a lot about Rust in the meantime and got totally addicted

to the process. So I need to pair that word of caution with

my open source tip.

 00:39:17 You might get started with something, you might find that

people are appreciating what you do, but it's very difficult

to then not get addicted to it. I call it a legalized drug, just

something to keep in mind. A lot of people who then do a

lot of open source, they end up doing a lot of it in their

spare time and it's not so easy to draw a balance. I can't

offer very good advice when it comes to drawing a balance

between life and open source because I'm not there yet,

but working on it.

Jon Krohn: 00:39:47 Yeah, I understand what that can be like. It's definitely

not the same thing. So I have not done much open source

contributing at all. It's been many years since I've done

any. I mean, I open source Python scripts in Jupyter

notebooks when I do tutorials. So for YouTube videos that

I make on machine learning foundations or introductory

deep learning tutorials, I do open source my code and

sometimes people make issues and then I resolve them or

there's some small amount of collaboration. But that

doesn't really feel to me like the kind of open source

collaboration that you're describing if you're working on

Rust or Polars and it's this big ecosystem with I imagine

hundreds of contributors and everybody has their own

little piece and everything needs to work together and

execute properly. And so I haven't done that kind of stuff

to a significant extent.

Marco Gorelli: 00:40:47 I mean that is really enabled by all of the modern tools we

have, like GitHub, all of the CI minutes that GitHub gives

us. Otherwise, it'd be so difficult to coordinate between

hundreds of contributors. What I find the hardest is the

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
22

people part, like API decisions. This part is really difficult.

Something I noticed recently in Pandas is there's a

function which does not behave as its docstring says it

does, and it's been like that since at least 2019. And now

what do we do? Do we correct it? But then it's going to

break people's code who are relying on it? Do we update

the docstring? But then the behavior that it does have

seems rather odd. It is just so difficult to make that kind

of decision. Whatever you do, you're going to anger some

people. Yeah, that's the hardest part of open source. In

the end, technical issues are relatively easy compared to

some of the people ones.

Jon Krohn: 00:41:44 Yeah, version issues are a pain for sure. So anyway, we

kind of digressed over here from, we were talking about

time zones and you got talking about how your interest in

time zones, it was a stepping stone for you to learn about

Rust but also to contribute to the Polars time zone

functionality. And so it was a win-win. Then since then

you've been addicted to open source contribution.

Marco Gorelli: 00:42:11 Something like that. Yeah.

Jon Krohn: 00:42:14 What is it about the way that Polars handles time zones

now that you've been working on it that is, how does that

look and feel for me differently as a Polars user?

Marco Gorelli: 00:42:25 Compared to before I started contributing?

Jon Krohn: 00:42:27 Or compared to other alternatives out there?

Marco Gorelli: 00:42:30 Well, yeah. Compared to other alternatives that work, I'd

like to think you shouldn't notice much of a difference.

Compared to before I started contributing, the difference

is that the time zone is typically taken into account when

you're doing calculations. So remember some of the early

bugs that I would see was something like if I tried to

calculate the daily average, then the daily average is done

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
23

on UTC time rather than on the local time. It's like, okay,

yeah, we need to fix that. And then it's like, oh, but if I

pass this data then it just errors because of an

ambiguous date time, there should be a way to resolve

that ambiguous date times. So when we do daylight

savings, we shift the clock back at one point of the year

and we shift the clock forwards at another part of the

year. So when we turn the clock back, then we're

essentially repeating the same times multiple times. I am

using the word times but to mean different things. Sorry

about that.

Jon Krohn: 00:43:34 Yeah, exactly. When the clock goes backward, for

example, you end up having, I think it switches at 2:00

AM or-

Marco Gorelli: 00:43:44 Yeah, exactly. So 2:30 or something. It's going to happen

twice.

Jon Krohn: 00:43:47 Twice in one night.

Marco Gorelli: 00:43:48 And if you're trying to pass a string which contains 2:30

on the 25th of October 2020, how do you know which

2:30 it refers to? Must be an absolute nightmare being a

policeman and having to go through reports where people

are trying to reconstruct what happened anyway. Anyway,

if you're doing this in Polars, there needs to be a way to

deal with that. So I introduced an ambiguous argument

to the date, time function similar to what there is in

Pandas, and it at least gives you a way to deal with it.

Jon Krohn: 00:44:18 In a recent episode of this podcast, the mathematical

optimization guru Jerry Yurchisin joined us to detail how

you can leverage mathematical optimization to drive

commercial decision-making, giving you the confidence to

deliver provably optimal decisions. This is where Gurobi

Optimization comes into play. Trusted by most of the

world’s leading enterprises, Gurobi's cutting-edge

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
24

optimization solver, lightweight APIs, and flexible

deployment simplify the data-to-decision journey. And,

thankfully, if you’re new to mathematical optimization

approaches, Gurobi offers a wealth of resources for data

scientists, including hands-on training, comprehensive

Jupyter-notebook examples, and extensive, free online

courses. Check out Episode #813 of this podcast to learn

more about mathematical optimization and all of these

great resources from Gurobi. That’s Episode #813.

 00:45:08 Very cool. So Polars might be something that people have

heard about for the first time from this episode. While

even in my introduction to Polars, I assumed that pretty

much anyone who's a hands-on data scientist knows

Pandas is very likely even used Pandas. So with this rapid

development of Polars, where do you see it heading? It's

blossoming in popularity. I hear people talking about it

more and more. I think that's a big part of why I was like,

"We've got to get Marco on and have a Polars episode." We

haven't talked about that yet and I feel like it's something

everyone needs to know about. So where do you think

Polars is heading? Where do you think it's going next in

its evolution? I don't don't know if I've kind of teed you up

enough with this question. You might already have some

thoughts on how to answer.

Marco Gorelli: 00:45:59 Sure. So I think there's two parts of Polars we need to talk

about. One is the implementation itself and the other is

the API. The implementation follows its own API of course,

but the API can take on a bit of a life of its own, just like

the Pandas API took on a bit of a life of its own. So

Pandas follows the Pandas API, but then we saw Modin

come along, which also follows the Pandas API, and then

FireDucks and QDF, and now we're seeing that Polars

might be going in a similar direction. Modin is a

dataframe library which historically has promised to

distribute your Pandas code and now they're also offering

a Polars API. Now they haven't released details of what's

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
25

going on under the hood with regards to the engine, but

the fact that that Polars become popular enough that

they're like, "Okay, we need to do something with this."

 00:46:53 It's a good sign. We're seeing that Nvidia are contributing

GPU support to Polars. So earlier you were talking about

how when you've got lazy execution, at some point you

want to actually see the results. You need to tell Polars

that you want to see the results. What the team is

working towards is the ability that when you tell Polars

you want to see the results, you can tell it, "Compute this

for me, but do it on GPU." So then you're making use of

both GPU acceleration and query optimization. I don't

think the world is ready for such levels of speed.

 00:47:29 So in terms of where are we going, I think that the library

itself is going to grow, but I think the Polars API, I'd like

to see it become a bit of a dataframe standard. I'd like to

think that when people make new dataframe libraries and

there will be new dataframe libraries. I don't think Polars

is the last one. I'd like to think that their API will be much

more similar to the Polars one than to the Pandas one,

which has dominated the dataframe API space in Python

up until very recently.

Jon Krohn: 00:48:00 Very cool. It's nice to hear your insights into what's

happening next and these interplay between different

libraries and technologies facilitated by say with Modin,

facilitating broader distribution, with Nvidia supporting

execution on GPUs. Something that must be very near

and dear to your heart, or at least to your addiction is

another open source project that you created that allows

for compatibility. This is Narwhals. So last year you

described Narwhals as an extremely lightweight

compatibility layer between Pandas and Polars. So what is

the problem that you're addressing there with your

Narwhals library?

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
26

Marco Gorelli: 00:48:52 Sure, thanks for asking about it. It's still slightly cracks

me up that we've got a library called Narwhals that we're

actually talking about. It started off as a little weekend

project and I was feeling a bit silly, so I called it after a

viral Mr. Weebl song, but now it's being adopted by some

people. So I guess we're stuck with the name. Maybe

before I go in too deep, just a slight correction. I think

this year I described it like that. I only released it back in

February. It's a very young project, but it's quickly

gaining a bit of traction.

Jon Krohn: 00:49:20 Yeah, I'm sure you're right. That must be a rare research

error.

Marco Gorelli: 00:49:26 Maybe not a research error, maybe confusion with

another similar project. Before Narwhals, I was involved

in a group called the dataframe Consortium, which was

trying to make a DataFrame standard, like some

dataframe API that different dataframe libraries could

implement and then people could write dataframe

agnostic code on top of. It's difficult to get different people

to agree and the stakes here were pretty high. I just

wasn't able to agree with most people there. I found

myself disagreeing with most of the participants about

nearly everything. I wanted to bring things decidedly

towards Polars. They wanted things to be not exactly like

Pandas, but they didn't want things to deviate too much

from Pandas. They didn't want things to deviate too much

from what most people were familiar with and from what

would be difficult for them to implement. So in the end,

after having agreed to disagree, I said, "Well, let's take all

of these ideas which the consortium had rejected and let's

package them as its own thing. Let's call it Narwhals and

let's see what happens."

 00:50:31 And the idea is it's like what the dataframe standard was

trying to be. So just some API which different backends

can implement and which a library can then use to just

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
27

define its transformations, to just define its dataframe

logic. And then the user can bring their own dataframe,

pass their own dataframe in, and they can just use it

seamlessly as if that library was written specifically for

their dataframe. So someone comes along with Pandas,

they can just use it. Someone else comes along with

Polars, they can just use it. The Pandas user doesn't need

to have Polars installed and the Polars user doesn't need

to have Pandas installed. This is what we're aiming to

enable. What kind of surprised me was that interest in it

happened a lot faster than I was thinking.

 00:51:18 So within about a month or two we had a scikit-lego,

which is like a medium-sized library for some extra things

which don't quite fit into scikit-learn. They decided to

adopt it, which aside from the fact that it's kind of nice as

a Polars user to be able to use a library without having to

convert the Pandas, it also made a massive performance

difference in some cases. So Polars, because of the

reasons we described at the beginning of the episode, it

really excels at feature engineering can do things in

parallel. It can do common sub-planet elimination. And so

for the feature engineering functions in scikit-lego, doing

it directly in Polars as opposed to having to convert to

Pandas, doing the operation in Pandas and then

converting back to Polars. It can make, I had one

benchmark where I was seeing even a close to 150x speed

up.

 00:52:17 It was really quite massive. So yeah, I was pretty happy

with that. And then what made me fall off my seat just a

couple of weeks ago was the major visualization library,

Altair have adopted Narwhals. And so, like this that made

NumPy optional, Pandas optional, PyArrow optional. I

think PyArrow might've been optional from the start, but

if you were trying to plot a Polars library, you were

required to have PyArrow installed, whereas now you

could just pass a Polars dataframe to Altair. You don't

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
28

need NumPy, don't need Pandas, don't need PyArrow, and

it'll just plot it natively. So for Polars users, they just need

this very lightweight library and they can make beautiful,

possibly interactive plots, and this is exactly what I was

hoping to enable with Narwhals, just a better adoption for

Polars and other newer dataframe libraries at no cost to

their existing Pandas users.

Jon Krohn: 00:53:12 Very cool. Let's talk about actually Altair for a second

year because that is a library. It's a Python library?

Marco Gorelli: 00:53:22 It's a Python library, yes.

Jon Krohn: 00:53:25 I'm used to thinking about really the only two, well, okay,

maybe I can think of three plotting libraries off the top of

my head. Obviously, Matplotlib. Seaborn, which has been

popular for years is a slightly prettier... Because

Matplotlib is, it's just with all of the base, if you just stick

with all the basic pre-installed configurations, you end up

with pretty unattractive plots with quite abrupt colors

next to each other, whereas Seaborn out of the box

creates beautiful plots. The other library I could think of

off the top of my head for plotting is Plotly, and I actually

can't off the top of my head, remember why I would use

Plotly.

Marco Gorelli: 00:54:12 Plotly is nice. Yeah, it makes really nice interactive plots

for you pretty much out of the box.

Jon Krohn: 00:54:16 Interactive plots.

Marco Gorelli: 00:54:17 Yeah, I really recommend that one. Yeah, Seaborn's nice

as well. Yeah, as you say, it's like a wraparound

Matplotlib. With Matplotlib can do anything. I think

practically, literally anything, things you just didn't even

know were possible. You'll find some answer on Stack

Overflow where someone has given you an answer. But

yeah, not super user-friendly and Seaborn makes it a lot

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
29

easier. My hope is that maybe if Narwhals can become

more popular, maybe Seaborn can trust us enough that

we can rewrite Seaborn to be Narwhalified and people can

pass Polars dataframes into Seaborn. Not currently

possible, but hey, let's see.

Jon Krohn: 00:54:56 Yeah, yeah, very cool. I've said very cool way too much in

this episode, but I thought that a lot of the things that

you've said are very cool. Hopefully my transitions have

become a little bit more nuanced after I say that phrase.

But with Altair specifically, this is a library that I've only

just started to hear people talking about, but it is widely

used. And so, why should a listener think about picking

up Altair and using that library for plotting interactively?

Marco Gorelli: 00:55:26 I think the API is really nice and consistent and it just

makes sense in your head, at least the way that I would

think about making plots. They've got a nice grammar.

There is a bit of a learning curve. You need to learn these

rules, you need to learn about channels and marks, but

once you get it, you can make plots and you can make

them look nice and you can plot what you want. I think it

might not be quite as highly customizable as something

like Matplotlib. So if you need to make really super highly

customized plots, then maybe it's not the perfect solution.

But I think for most data scientists who need to tell

stories with their plots who need to understand data, I

think it's a really good solution.

Jon Krohn: 00:56:19 This Narwhals project, which you only started on a year

ago, it sounds like-

Marco Gorelli: 00:56:23 February.

Jon Krohn: 00:56:24 You only started-

Marco Gorelli: 00:56:25 Less than a year.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
30

Jon Krohn: 00:56:26 Right, right. It already has been picked up by places like

Altair. It's already making a big impact. Part of what's so

impressive about it is its minimal overhead and its lack of

dependencies in its design. How hard or easy was it to get

that level of efficiency? Were there some big technical

challenges that you faced while developing?

Marco Gorelli: 00:56:51 Sure. So on the dependency side, I don't think it's that

difficult. I think it's just a matter of willpower. So if you

want to keep your library dependancy free, I think it's

usually not that much of a stretch in this case. Suppose

that you are a library which receives a dataframe from the

user, and you want to know whether it's a Pandas

dataframe. The obvious solution is to try importing

Pandas, and if that succeeds, you check if it's a Pandas

dataframe. But we can actually do better than that

because if somebody has passed us a Pandas dataframe,

it means that they must have already imported Pandas.

So we can just do import sys, we can check all of the

libraries that the user has already imported in

sys.modules and see if Pandas is in there. And if it's not,

then obviously this cannot be a Pandas dataframe, so we

don't even need to try importing Pandas.

 00:57:42 So what we're very strict about in Narwhals is we don't

import anything like this. We don't risk introducing

dependencies and we don't risk slowing things down by

forcing people to import things, which the object just

isn't. So that's a part of it. The other part of it is the

overhead. That, I think isn't so immediate because we're

translating syntax. The key there is to just have a good

mental model of what Polars expressions are. And to me,

an expression is just a function from a dataframe to a

sequence of series. Once you define it that way, then

chaining expressions together, chaining these calls, it's

just a matter of chaining Lambda functions, one after the

other. You can just need to be very rigorous about

recursively applying this definition everywhere, and it all

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
31

just kind of happens. There is potential for overhead in

the sense that Pandas does a lot of things with the index,

which you don't necessarily want.

 00:58:49 Pandas is always aligning indices with each other, but

Polars doesn't have a notion of an index. So if you want to

make Pandas behavior mirror the Polars one with the

same API, you need to be careful to avoid automated

index realignment. The naive solution to that would be to

do reset index all the time, which is in fact, what we see

in a lot of users code. Reset index is not a free operation

though. So what we do in Narwhals is that the API itself

means that when you're comparing columns, they

typically are derived from the same dataframe just

because of how the expressions API works. So we just do

a quick check of whether the index of the left-hand side is

the same as the index of the right-hand side.

 00:59:35 We don't even compare the values, we just check, "Left

index is right index." If it is, then we leave it alone. And if

it's not, we set the right-hand side's index to be the left-

hand side's index. And what I've observed empirically

then is that compared to the naive way of writing Pandas

code, we can often make things a little bit faster, which

although I need to caveat that. So in Pandas version

three, copy on write will become the default. This is an

optimization. So once that becomes the default, then

writing via Narwhals or writing Pandas code directly

shouldn't make a difference.

 01:00:14 Before that, I've noticed that Narwhals will often make

things a bit faster unless you're dealing with a 100 row

dataframe. If you've got something so small, then the

overhead of just the extra Python calls within Narwhals is

not... It is going to be detectable. You're going to have an

extra half a millisecond there. So if you need to write a

reactive web application using dataframes, yeah, maybe

just use the dataframe library directly. Don't use

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
32

Narwhals for anything more than a hundred rows for

anything where half a millisecond of overhead is tolerable.

Then I think I'd like you to think it's a good solution. And

for Polars users especially, that's half a millisecond of

overhead. Compared to the overhead of converting to

Pandas, it's nothing.

Jon Krohn: 01:01:00 Very cool. Great summary point there. Very cool again.

You're getting from me. You have expressed hope for a

future where data science becomes dataframe agnostic.

So could you explain for us what dataframe agnosticism

is?

Marco Gorelli: 01:01:15 Sure. Yeah. Well, you very kindly introduced the topic

earlier by bringing up Seaborn. Seaborn just takes the

dataframe and then visualizes it. There's nothing about

the logic of the library that should be tied to Pandas. So

why is it that it only works on Pandas? It does accept

other dataframe libraries, but if it receives anything else,

the first thing it does is it converts it to Pandas and then

it does everything else. There's no theoretical reason why

that should be the case. I don't know. What does Seaborn

do inside? It takes a column. It does a group by and it

finds the sum. I think every dataframe library does that.

Certainly every dataframe library that we're supporting in

Narwhals. So I'd like to think that we can aim for a future

where libraries such as Seaborn can just define their

logic, and then the library can be dataframe agnostic.

 01:02:10 So long as you are either supported by Narwhals or you

comply with the Narwhals API, then your library can just

slot in there. And the good thing about standards is that

they really enable freedom. Because as much as I love

open source, I'm not an open source absolutist. And the

nice thing about having a standard out there, about

having a Narwhals specification and its API is that

someone can come along with their closed source solution

and we don't need to know about it. As long as their

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
33

closed source solution respects the Narwhals API, then

it'll work seamlessly without them having to ask us for

permission to do anything, without them having to open

source their library. I prefer it if people open source

things, but as I said, I'm not an open source absolutist.

And I think this is one thing that a standard specification

like the Narwhals one can enable.

Jon Krohn: 01:03:04 That was a great summary to give us a sense of why the

Narwhals project is so important and this idea of a

dataframe agnostic future. And I could imagine that not

even just with dataframes, there's probably lots of ways

that in development in general, we could have more

interoperability between libraries by thinking about

commonalities and not having discrete silos of specific

projects that are segregated from each other.

Marco Gorelli: 01:03:31 That's the thing. Yeah, it's not just the silos thing. That's

an important thing. Lots of projects, they just develop

their things, like in writing Narwhals, interacting with

people from lots of different projects. It's a lot of fun. It's

just a lot of fun to collaborate with communities from

different projects. That was just unexpectedly positive

benefit of this project and probably the part that I'm

enjoying the most.

Jon Krohn: 01:03:58 Nice. So we've heard now a lot about specific open source

projects. I've alluded to how Quansight Labs where you

work has a hybrid employment model which balances

time between community projects like open source

developments and consulting work, which brings in

revenue directly. So how does this model where you're

splitting time between open source and consulting work

benefit both the maintainers like yourself as well as

commercial clients of Quansight Labs?

Marco Gorelli: 01:04:32 Sure. Well, you asked how it benefits maintainers first. So

let's start with that. We often get started with open source

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
34

because we're excited about fixing things, we're excited

about adding new features that we might want. But then

what happens five years down the line to those features

which you've added? Someone's going to have to keep

them working, and the reality of open source is that most

people make one or two contributions somewhere and

then vanish. When it comes to sustaining things for a

long time, it's fairly difficult to do this just on willpower,

just with volunteer work alone. A lot of these open source

projects have become so big, so widely used, they've

practically become critical infrastructure and it's just not

feasible for everything to be done by volunteers. So

fortunately we've been seeing funding come in for open

source projects. We've been seeing CZI, the Chan

Zuckerberg Initiative.

 01:05:33 We've been seeing NASA donate money to open source

projects and lots of other companies. It's nice to see that

the Python Software Foundation itself has been able to

hire, I think even two people to work on Python

development as opposed to just being volunteers. So in

terms of how it helps maintain us to receive some money,

it means that for a lot of the tasks which you just would

not be able to do as a volunteer, you can do them. Some

big picture things like totally reworking how something

functions in Pandas, as a volunteer, if you've just got a

couple of hours each Sunday to do that, you're not going

to have a chance to do that. You can maybe work on

some incremental improvements, but you can't rework

how something functions. But if you've got some funding

behind it, it can work. When it comes to reviewing other

people's pull requests, if you've got time, if you're paid to

do that, you can do it.

 01:06:30 People are often much more motivated to work on their

own things than to review other people's. The other side

though is that, yeah, Quansight Labs is not a charity.

They don't just out of the goodness of their heart give

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
35

maintainers time to do things. It also helps the bottom

line because there are companies that then know

Quansight as experts in open source. So with open source

maintenance, this also benefits Quansight itself.

Companies are coming in for training for help with how to

use software, but also sometimes with very bespoke

features. So they maybe want, they're like, "I really want

Pandas to support non-nano-circuit resolution. Can

someone please do this for me?"

 01:07:23 That was an actual request we got once, and it's not

something that was completely delivered by Quansight,

but Quansight really enabled it. If Quansight had not

been part of the picture, I question whether that would've

happened at all. Maybe it would've taken an extra three

years for it to happen. So yeah, it's nice that at Quansight

then we've got people involved in sales in marketing who

know how money works as opposed to just being people

coding in their spare time who don't necessarily have the

skills or knowledge to deal with that.

Jon Krohn: 01:08:04 Makes perfect sense. And long may commercial

supporters of open source work continue. I'm a huge fan

of open source work. Most of the libraries, if not a

hundred percent of the libraries that I've been

programming with for more than a decade now. There

was a time when I was using MATLAB.

Marco Gorelli: 01:08:25 I remember that. Yeah.

Jon Krohn: 01:08:28 But, and yeah, I don't think I've written a line of MATLAB

code and over a decade. Since then it's been all open

source programming for me all of the time. All of the

training that I do is in open source. A huge amount of the

code that we use at my software company, Nebula for

developing our data science models for our whole

backend front end of the platform, everything is open

source, and so hugely grateful. You mentioned the Chan

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
36

Zuckerberg Initiative. Meta also obviously has been

pouring huge amounts of capital into training and open

sourcing large language models like the Llama series of

models and all of these things make a big difference. They

allow all of us as data science lovers, listeners to this

podcast to be able to do more and make a big impact. So

yeah, I hope that this trend continues.

 01:09:26 It's great to hear behind the scenes how things work with

Quansight Labs in particular, and maybe that will inspire

some consultancy owners out there who are listening or

other people to be thinking about how you can be

supporting open source workers or open source projects

in order to help your bottom line while also doing a

service to the whole world. Now, a question here that our

researcher Serge dug up is that according to a source that

he found, only about 3 - 5% of open source contributors

are women, which is a really low percentage. I don't know

the exact percentage off the top of my head, but I know

that the percentage of women say working in data science

and in software development is much higher than 3 - 5%.

And so, do you have any thoughts on proactive steps that

people could take so that open source projects like

Pandas, like Polars, like Narwhals, have more diversity

than today?

Marco Gorelli: 01:10:34 Yeah, totally. Really important topic to talk about because

you are right about these percentages not being aligned.

Sometimes people explain it away by saying, "Oh yeah,

but it's a pipeline problem. There's fewer women in tech,

so obviously there's going to be fewer women contributing

to open source," but then the percentage who do

contribute is a lot lower than the percentage who are in

tech. And there's a variety of reasons for that. I think we

can't discount the fact that women do most of the unpaid

labor in society, and if open source is a primarily leisure

activity, then it means they've got less time for it. It's not

the only reason though. I think things are getting better,

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
37

but there's a lot of projects where it does feel that, a bit

like an old boys club, like the way maybe that people use

humor, the kinds of things that people might say or

discuss. There's a lot of things that have historically been

tolerated that probably shouldn't have.

Jon Krohn: 01:11:37 Right. Locker room talk.

Marco Gorelli: 01:11:38 Yeah. Yeah, exactly. I mean, now it's quite rare to find a

project that doesn't have a code of conduct, but we

should remember that it was not always the case. It

wasn't that long ago that just bringing up the question,

"Should a project have a code of conduct?" would spark a

whole load of controversy with people saying, "Oh, but it's

not really necessary. We haven't had any harassment yet.

Why do we need this?" And well, okay, just because you

haven't seen it doesn't mean it's not happening. You did

ask a specific question though, which is what can we do

about it? That's a tough one. So first I'd like to slightly

defer to Dr. Maren Westermann's talk at Euro SciPy last

year in which she really talks about the importance of

mentoring because it's not just about getting people to try

contributing, it's about sustaining people.

 01:12:33 I was involved for a while with PyLadies London trying to

do some Panda sprints, trying to get people from

underrepresented groups in tech to contribute. And these

sessions were fairly well attended and people made

contributions. We got a lot of people involved, but it's very

difficult then to sustain people. It requires an active

effort. I think unless you are actively going to set aside

time and money towards mentoring people, it's very

difficult. This becomes doubly difficult in a project which

has already been going on for 15 years or something, and

which has historically been all male.

 01:13:14 At that point, to rectify that you're going to have to put in

twice as much effort as if you were just starting from

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
38

scratch. Now in Pandas, I don't think we've got much

hope of making a significant difference there, to be

honest. I mean, we do now have one woman core

developer. Realistically, the percentage of women is, I

think it's unlikely to get close to the percentage of women

in tech, at least without active efforts. And yeah, active

efforts, take time, take money.

 01:13:57 Unfortunately, Pandas didn't even receive CCI funding

this year, so it's going to be tricky. With Narwhals starting

from the beginning, we've been a lot more careful about

this. I was messaging talented women that I knew saying,

"Hey, maybe are you interested in trying out this project?

I can help you out, provide quick reviews." And yeah,

we've got lots of women who are contributing, who have

given commit rights too. Going to do, probably going to

take part in the Grace Hopper conference later this year,

which is, I think it's primarily aimed at women. So with

Narwhals from the start, we're just making this a priority

and maybe we'll be able to do things differently. I don't

know. We'll see.

Jon Krohn: 01:14:42 Nice. That sounds like a step in the right direction to me.

It also sounded like you had some great tips in there for

projects in general. So more mentorship would make a big

difference. Your technique has been active reach outs to

maybe... Because that kind of thing happens where if

somebody like you who created this project taps you on

the shoulder and says, "Hey, you have the skills I need,

would you like to be involved?" That can flip things in

someone's mind right away from thinking, "Oh, this isn't

something that's for me because maybe I haven't seen

people like me do this before or just didn't imagine that I

could." But then someone taps you on the shoulder and

you're like, "Okay, yeah, maybe I can do this. I can give it

a shot." Especially I guess if some mentorship is paired in

there. And then you made an interesting point there at

the beginning of your answer around more paid roles.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
39

 01:15:34 You didn't say this explicitly, but you said that because in

a lot of, maybe all cultures around the world, women

disproportionately do unpaid work in the household, in

child-rearing, these kinds of things. There are exceptions

on an individual basis, but on the society as a whole, this

is what we see. And so there's maybe something, some big

problem of society that could be rectified over long

periods of time, but in the immediate term, having more

and more paid open source developer roles would alleviate

some of this problem because then somebody doesn't

have to be thinking about having this additional unpaid

work on top of the paid work that they already do because

they can incorporate it into their payroll.

Marco Gorelli: 01:16:30 Totally. Yeah. It needs to be an active effort. It's not going

to fix itself.

Jon Krohn: 01:16:34 Yeah. Great answer. I've got one last topic area for you.

We've heard a lot in this episode about the brilliant

software development that you've done on a data library,

on Polars and also in Narwhals, supporting Polars, but

you have done some data science work in the past,

specifically around forecasting. So you achieved

impressive results in several forecasting competitions

such as the M5 and M6 forecasting challenges. Do you

want to tell us about what those challenges are?

Marco Gorelli: 01:17:08 Sure. Let's see if I can remember. That was a few years

ago. Yeah. I used to work in data science. Well, my

background's in mathematics, but then realized I wasn't

good enough to be a mathematics academic, so became a

data scientist.

Jon Krohn: 01:17:26 Zing.

Marco Gorelli: 01:17:27 Then got addicted to open source and became a software

engineer. But for four or five years or something like that,

I did work in data science and got quite interested in

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
40

forecasting. It was quite related to work I was doing in

companies, and I just found that taking part in

competitions was a fun way to improve your skills. People

sometimes say that these competitions are not real data

science, and I agree it's not real data science in that it

doesn't show you the complete lifecycle of a data science

project, but it can teach you some real lessons, which can

then be useful when you are doing real data science.

 01:18:07 So the M5 competition, that was a fun one. There, you

had to forecast Walmart sales. It was, yeah, real data.

And there were two tracks to it, the uncertainty one and

the point prediction one. I worked with a friend of mine

on both of them. We were, just as people often did on

Kaggle back then, blending solutions together. And what

we generally found, what generally the Kaggle community

finds is the most important thing isn't using the most

unusual model, but having a good way of cross validating

your data, of having a way of estimating how well is your

model going to perform on unseen data?

 01:18:58 When people talk about Kaggle and real life data science,

I think the fact that it teaches you to do cross validation

well is the biggest benefit that it'll bring you. Then came

the M6 competition, and that was financial forecasting.

And there I just took a bit of a gamble. I just figured, well,

most people are going to overfit. I don't know anything

about finance, if I just submit the simplest possible thing,

then maybe it'll land the top 10% and I can put that on

my CV.

 01:19:31 Unexpectedly, I came second in the first quarter and was

awarded $6,000 for that. So yeah, I put that on on my CV

to look smart, but I don't know anything about finance. I

don't have any insight here. If someone wants to come to

me for trading advice, then I can't tell you anything useful

other than don't do anything wild. I can tell you about

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
41

how to beat other competitors in financial forecasting

competitions, but not necessarily how to do-

Jon Krohn: 01:20:04 By keeping it simple.

Marco Gorelli: 01:20:05 Exactly.

Jon Krohn: 01:20:06 So two tips there. So you might be able to out-compete

people in forecasting competitions by sticking to simpler

models that are less likely to over-fitting and also the

importance of cross-validation, which you mentioned

there. Which is something if you're not already aware of

it, this is where you take, say... A common way of

describing cross-validation is with k-fold cross-validation

where you split your data into some number of partitions.

 01:20:34 And so if you did say five-fold cross-validation, you would

train your model on, well, you split your data into five

parts of equal size randomly putting samples into each of

those five buckets equally sized, and you train on 40%.

So you train on four of the buckets and evaluate on the

fifth, and then you can repeat that five times, each time

leaving a different 20%. So the first 20%, the second 20%,

third 20%, going like that through all five 20 percents,

and in this way you are training and validating on all of

your data, taking advantage of all of it.

Marco Gorelli: 01:21:19 Yeah, maybe just small note. In time series, you need to

be especially careful with how you make your buckets so

that you're not training on future data and predicting

past data, but that's the idea. Yes.

Jon Krohn: 01:21:32 Great point. Glad that you pointed that out there. So this

has been a fascinating episode. I've loved it. It's been

illuminating to hear so much about Polars from you. You

describe in such crisp, clear detail every aspect of what

you're talking about and make it so easy to understand.

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
42

So really appreciate you doing that, Marco. Before I let

you go, do you have a book recommendation for us?

Marco Gorelli: 01:21:54 We're doing fiction, nonfiction?

Jon Krohn: 01:21:56 Whatever. You can do one of each if you really want to.

Marco Gorelli: 01:22:01 Let's be greedy and do that, then. Take two. Okay, so a

technical book. I think Programming Rust published by

O'Reilly is really good, as is the Rust programming

language. So yeah, if you are a Python programmer, want

to get into this, want to write your Polars plugin, then it's

a really accessible way to get into the language. Fiction?

The last fiction book I remember really enjoying is called

All That's Left Unsaid by Tracy Lien, just about some

Vietnamese immigrants in Australia. This girl, her

brother's been murdered, but her family, they're really

distrustful of the police, really distrustful of the

authorities, don't want to speak to anyone about

anything, and she's trying to understand what's

happened to her brother. Really good book. Recommend

it.

Jon Krohn: 01:22:50 Great recommendations. Thank you, Marco. And for

people who would like to follow you on your thoughts

after this episode, how should they do that?

Marco Gorelli: 01:22:58 If people want to follow me on social media, they can find

me on GitHub at Marco Gorelli. Other social media, I'm

on LinkedIn and Fosstodon.

Jon Krohn: 01:23:11 Nice. Fosstodon, one of the many, although I think

probably the most popular. Do you think? Kind of, post-

Twitter social media places to be?

Marco Gorelli: 01:23:23 Maybe, yeah. People still call it Twitter much to Musk's

angerment. Oh, well. Yeah, on there. Well, Mastodon, as,

I'm still not totally sure how this federation thing works,

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
43

but I log on to Fosstodon.com. So I'm going to call it

Fosstodon.

Jon Krohn: 01:23:42 Nice. Cool. Well, maybe we can dig into that kind of stuff,

the social media stuff, this post Twitter options, maybe

dedicate an episode to that at some point. Thank you so

much, Marco. It's been great having you on the show, and

thank you again for making the trip to London from

Cardiff. Maybe we can check in again in a few years and

see how Narwhals, Polars, whatever other exciting

projects you've gotten yourself into by then are coming

along.

Marco Gorelli: 01:24:08 Sure. Thanks for having me.

Jon Krohn: 01:24:15 Absolutely fascinating technical discussion with Marco

today. In today's episode, he filled us in on how Polars

excels at feature engineering and allows up to a 100x

speedups, especially on large dataframes thanks to lazy

execution. He talked about how on string evaluation such

as for natural language processing, Pandas is optimized

for this natively, so it outperforms the leading data

manipulation libraries at Python. That is, NumPy and

Pandas.

 01:24:37 He talked about how his Narwhals library allows other

libraries such as the popular declarative visualization

library, Altair to be dataframe agnostic, allowing support

for Polars without any detriment to Pandas users. He told

us how he won $6,000 in prize money in the M6

forecasting competition by assuming that most teams

would overfit their models to the training data. And he

talked about how more paid roles, more mentorship and

active reach outs could increase diversity amongst open

source software developers.

 01:25:06 As always, you can get all the show notes including the

transcript for this episode, the video recording, any

http://www.superdatascience.com/815

Show Notes: http://www.superdatascience.com/815
44

materials mentioned on the show, the URLs from Marco's

social media profiles, as well as my own at

superdatascience.com/815. Thanks of course to everyone

on the Super Data Science podcast team. You've got our

podcast manager, Ivana Zibert, media editor Mario

Pombo, operations manager Natalie Ziajski, researcher

Serg Masis, writers Dr. Zara Karschay and Silvia Ogweng,

and founder Kirill Eremenko.

 01:25:34 Thanks to all of them for producing another dazzling

episode for us today, for enabling that super team to

create this free podcast for you. I am so grateful to our

sponsors. You can support this show by checking out our

sponsors' links, which are in the show notes. And you

yourself, if you are interested in sponsoring an episode,

you can do that. You can find the details on how by

making your way to jonkrohn.com slash podcast.

Otherwise, please share, review, subscribe and all that

good stuff. But most importantly, just keep on tuning in.

I'm so grateful to have you listening, and I hope I can

continue to make episodes you love for years and years to

come. Until next time, keep on rocking it out there and

I'm looking forward to enjoying another round of the

Super Data Science Podcast with you very soon.

http://www.superdatascience.com/815

